{"title":"具有可扩展高度和内置储层的水凝胶冲压件,用于在3D拓扑结构上绘制生物分子图案","authors":"A. Salim, Z. Ding, Babak Ziaie","doi":"10.1109/MEMSYS.2007.4433117","DOIUrl":null,"url":null,"abstract":"In this paper, we report on an expandable height hydrogel stamper with built-in reservoir that can be used to repeatedly (without frequent re-inking) stamp functional biomolecules on planar and non-planar surfaces. We have successfully patterned fluorescein isothiocyante (FITC) labeled antibodies (antibodies for O-antigens of Bradyrhizobium japonicum made in rabbits) on planar (silicon) and nonplanar (SU8 on silicon with a height of ~70 mum) topologies. The printed antibodies show the effectiveness of hydrogel stampers in delivering biomolecules on 3D topologies where the hydrogel could be adjusted to stamp on the sidewalls and bottom of deep trenches.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"23 1","pages":"513-516"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hydrogel stamper with expandable height and built-in reservoirs for patterning biomolecules on 3D topologies\",\"authors\":\"A. Salim, Z. Ding, Babak Ziaie\",\"doi\":\"10.1109/MEMSYS.2007.4433117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report on an expandable height hydrogel stamper with built-in reservoir that can be used to repeatedly (without frequent re-inking) stamp functional biomolecules on planar and non-planar surfaces. We have successfully patterned fluorescein isothiocyante (FITC) labeled antibodies (antibodies for O-antigens of Bradyrhizobium japonicum made in rabbits) on planar (silicon) and nonplanar (SU8 on silicon with a height of ~70 mum) topologies. The printed antibodies show the effectiveness of hydrogel stampers in delivering biomolecules on 3D topologies where the hydrogel could be adjusted to stamp on the sidewalls and bottom of deep trenches.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"23 1\",\"pages\":\"513-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hydrogel stamper with expandable height and built-in reservoirs for patterning biomolecules on 3D topologies
In this paper, we report on an expandable height hydrogel stamper with built-in reservoir that can be used to repeatedly (without frequent re-inking) stamp functional biomolecules on planar and non-planar surfaces. We have successfully patterned fluorescein isothiocyante (FITC) labeled antibodies (antibodies for O-antigens of Bradyrhizobium japonicum made in rabbits) on planar (silicon) and nonplanar (SU8 on silicon with a height of ~70 mum) topologies. The printed antibodies show the effectiveness of hydrogel stampers in delivering biomolecules on 3D topologies where the hydrogel could be adjusted to stamp on the sidewalls and bottom of deep trenches.