基于卷积神经网络的监控摄像机掩模检测系统

I. M. Asana, Gede Aldhi Pradana, I. Handika, Santi Ika Murpratiwi
{"title":"基于卷积神经网络的监控摄像机掩模检测系统","authors":"I. M. Asana, Gede Aldhi Pradana, I. Handika, Santi Ika Murpratiwi","doi":"10.31315/telematika.v19i2.7246","DOIUrl":null,"url":null,"abstract":"The Covid-19 has been an epidemic that has taken the world by storm since the beginning of 2020. This Covid-19 outbreak can spread easily through the air. Because Covid-19 can transmit easily, the government implements new behavior based on an adaption to develop a clean and healthy lifestyle which is often called the new normal. One way to live the new normal is to wear a mask when leaving the house. To help increase public awareness in using masks, numerous technology- based studies have been carried out. This article explain an application using the python programming language that applies digital image processing in terms of detecting the use of masks using Deep Learning with the Convolutional Neural Network (CNN) method to classify data that has been labeled using the supervised learning method. In designing this CNN architectural model, a total of 2110 images of people wearing and without wearing masks will be used, this dataset will be divided into 2 parts, with a rate of 8020, where 80 of the dataset will be used as training data, 20 is used as validation data. In testing the model by taking a total of 100 images with a 5050 ratio between face images using masks and not using masks tested using a confusion matrix, it produces 97% of an accuracy rate, 100% of precision rate, and 94% of recall in recognizing facial images that use masks and don't use masks ","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mask Detection System Using Convolutional Neural Network Method on Surveillance Camera\",\"authors\":\"I. M. Asana, Gede Aldhi Pradana, I. Handika, Santi Ika Murpratiwi\",\"doi\":\"10.31315/telematika.v19i2.7246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Covid-19 has been an epidemic that has taken the world by storm since the beginning of 2020. This Covid-19 outbreak can spread easily through the air. Because Covid-19 can transmit easily, the government implements new behavior based on an adaption to develop a clean and healthy lifestyle which is often called the new normal. One way to live the new normal is to wear a mask when leaving the house. To help increase public awareness in using masks, numerous technology- based studies have been carried out. This article explain an application using the python programming language that applies digital image processing in terms of detecting the use of masks using Deep Learning with the Convolutional Neural Network (CNN) method to classify data that has been labeled using the supervised learning method. In designing this CNN architectural model, a total of 2110 images of people wearing and without wearing masks will be used, this dataset will be divided into 2 parts, with a rate of 8020, where 80 of the dataset will be used as training data, 20 is used as validation data. In testing the model by taking a total of 100 images with a 5050 ratio between face images using masks and not using masks tested using a confusion matrix, it produces 97% of an accuracy rate, 100% of precision rate, and 94% of recall in recognizing facial images that use masks and don't use masks \",\"PeriodicalId\":31716,\"journal\":{\"name\":\"Telematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31315/telematika.v19i2.7246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v19i2.7246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自2020年初以来,新冠肺炎疫情席卷全球。这种Covid-19的爆发很容易通过空气传播。由于新冠肺炎很容易传播,政府以养成清洁健康的生活方式为基础,实施新的行为,这通常被称为新常态。一种适应新常态的方法是出门时戴上口罩。为了帮助提高公众使用口罩的意识,已经进行了许多基于技术的研究。本文解释了一个使用python编程语言的应用程序,该应用程序将数字图像处理应用于使用卷积神经网络(CNN)方法的深度学习来检测掩码的使用,从而对使用监督学习方法标记的数据进行分类。在设计这个CNN架构模型的过程中,总共会使用2110张戴口罩和不戴口罩的人的图像,这个数据集将被分成2部分,比率为8020,其中80个数据集作为训练数据,20个数据集作为验证数据。在使用混淆矩阵测试使用面具和不使用面具的面部图像之间的5050比率的100张图像中,该模型在识别使用面具和不使用面具的面部图像时产生了97%的准确率,100%的准确率和94%的召回率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mask Detection System Using Convolutional Neural Network Method on Surveillance Camera
The Covid-19 has been an epidemic that has taken the world by storm since the beginning of 2020. This Covid-19 outbreak can spread easily through the air. Because Covid-19 can transmit easily, the government implements new behavior based on an adaption to develop a clean and healthy lifestyle which is often called the new normal. One way to live the new normal is to wear a mask when leaving the house. To help increase public awareness in using masks, numerous technology- based studies have been carried out. This article explain an application using the python programming language that applies digital image processing in terms of detecting the use of masks using Deep Learning with the Convolutional Neural Network (CNN) method to classify data that has been labeled using the supervised learning method. In designing this CNN architectural model, a total of 2110 images of people wearing and without wearing masks will be used, this dataset will be divided into 2 parts, with a rate of 8020, where 80 of the dataset will be used as training data, 20 is used as validation data. In testing the model by taking a total of 100 images with a 5050 ratio between face images using masks and not using masks tested using a confusion matrix, it produces 97% of an accuracy rate, 100% of precision rate, and 94% of recall in recognizing facial images that use masks and don't use masks 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1