应用模糊模型和响应面法优化铜绿菌对镉的吸收

mahmood Niad, Saeid Zarei
{"title":"应用模糊模型和响应面法优化铜绿菌对镉的吸收","authors":"mahmood Niad, Saeid Zarei","doi":"10.22104/AET.2021.4336.1223","DOIUrl":null,"url":null,"abstract":"The optimum conditions for the removal of cadmium as heavy and toxic metals via a biomass were investigated in this program. The biomass was prepared from an eco-friendly, native, and low-cost algae microorganism, e.g., Colpomenia sinuosa. The cadmium uptake involved the biosorption process onto the cell wall of the Colpomenia sinuosa. The experiments were carried out on the five different parameters of temperature, algae biomass dosage, the initial cadmium concentration, pH of the cadmium solution, and contact time for interval times of cadmium of the biomass surface. The design of the experiment (DOE) was done for different conditions. The optimum conditions were compared via two optimization methods. Both the response surface methodology (RSM) and fuzzy modeling were treated with experimental data. The contour maps were planned for understanding the effects of two interactive factors. The combined effects of pH-temperature, pH-contact time, and algae biomass dosage-temperature were plotted for cadmium uptake.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"6 1","pages":"31-36"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of fuzzy modeling and response surface methodology for optimization of cadmium uptake by colpomenia sinosa\",\"authors\":\"mahmood Niad, Saeid Zarei\",\"doi\":\"10.22104/AET.2021.4336.1223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimum conditions for the removal of cadmium as heavy and toxic metals via a biomass were investigated in this program. The biomass was prepared from an eco-friendly, native, and low-cost algae microorganism, e.g., Colpomenia sinuosa. The cadmium uptake involved the biosorption process onto the cell wall of the Colpomenia sinuosa. The experiments were carried out on the five different parameters of temperature, algae biomass dosage, the initial cadmium concentration, pH of the cadmium solution, and contact time for interval times of cadmium of the biomass surface. The design of the experiment (DOE) was done for different conditions. The optimum conditions were compared via two optimization methods. Both the response surface methodology (RSM) and fuzzy modeling were treated with experimental data. The contour maps were planned for understanding the effects of two interactive factors. The combined effects of pH-temperature, pH-contact time, and algae biomass dosage-temperature were plotted for cadmium uptake.\",\"PeriodicalId\":7295,\"journal\":{\"name\":\"Advances in environmental science and technology\",\"volume\":\"6 1\",\"pages\":\"31-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in environmental science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22104/AET.2021.4336.1223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2021.4336.1223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了生物质脱除重金属镉的最佳条件。该生物质是由一种生态友好、低成本的天然藻类微生物,如Colpomenia sinuosa制备的。镉的吸收涉及到大肠杆菌细胞壁上的生物吸附过程。在温度、藻类生物量投加量、镉初始浓度、镉溶液pH、镉与生物量表面接触间隔时间等5个不同参数下进行了实验。在不同条件下进行了实验设计(DOE)。通过两种优化方法比较了最佳工艺条件。用实验数据对响应面法和模糊模型进行了处理。绘制等高线图是为了了解两个相互作用因素的影响。绘制了ph -温度、ph -接触时间和藻类生物量剂量-温度对镉吸收的综合影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of fuzzy modeling and response surface methodology for optimization of cadmium uptake by colpomenia sinosa
The optimum conditions for the removal of cadmium as heavy and toxic metals via a biomass were investigated in this program. The biomass was prepared from an eco-friendly, native, and low-cost algae microorganism, e.g., Colpomenia sinuosa. The cadmium uptake involved the biosorption process onto the cell wall of the Colpomenia sinuosa. The experiments were carried out on the five different parameters of temperature, algae biomass dosage, the initial cadmium concentration, pH of the cadmium solution, and contact time for interval times of cadmium of the biomass surface. The design of the experiment (DOE) was done for different conditions. The optimum conditions were compared via two optimization methods. Both the response surface methodology (RSM) and fuzzy modeling were treated with experimental data. The contour maps were planned for understanding the effects of two interactive factors. The combined effects of pH-temperature, pH-contact time, and algae biomass dosage-temperature were plotted for cadmium uptake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of tropospheric ozone and its precursors using principal component analysis in an urban area of Surat, India The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup The CO2 removal of flue gas using hollow fiber membrane contactor: a comprehensive modeling and new perspectives Social Cost of CO2 emissions in Tehran Waste Management Scenarios and select the scenario based on least impact on Global Warming by using Life Cycle Assessment Surface Ignition Using Ethanol on Mo and Al2O3-TiO2 Coated in CI Engine for Environmental Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1