感染性休克患者血清可溶性硫酸肝素诱导小鼠心肌细胞线粒体功能障碍

L. Martin, Carsten Peters, S. Schmitz, J. Moellmann, Antons Martincuks, N. Heussen, M. Lehrke, G. Müller-Newen, G. Marx, T. Schuerholz
{"title":"感染性休克患者血清可溶性硫酸肝素诱导小鼠心肌细胞线粒体功能障碍","authors":"L. Martin, Carsten Peters, S. Schmitz, J. Moellmann, Antons Martincuks, N. Heussen, M. Lehrke, G. Müller-Newen, G. Marx, T. Schuerholz","doi":"10.1097/SHK.0000000000000462","DOIUrl":null,"url":null,"abstract":"ABSTRACT The heart is one of the most frequently affected organs in sepsis. Recent studies focused on lipopolysaccharide-induced mitochondrial dysfunction; however myocardial dysfunction is not restricted to gram-negative bacterial sepsis. The purpose of this study was to investigate circulating heparan sulfate (HS) as an endogenous danger associated molecule causing cardiac mitochondrial dysfunction in sepsis. We used an in vitro model with native sera (SsP) and sera eliminated from HS (HS-free), both of septic shock patients, to stimulate murine cardiomyocytes. As determined by extracellular flux analyzing, SsP increased basal mitochondrial respiration, but reduced maximum mitochondrial respiration, compared with unstimulated cells (P < 0.0001 and P < 0.0001, respectively). Cells stimulated with HS-free serum revealed unaltered basal and maximum mitochondrial respiration, compared with unstimulated cells (P = 0.1174 and P = 0.8992, respectively). Cellular ATP-level were decreased in SsP-stimulated cells but unaltered in cells stimulated with HS-free serum compared with unstimulated cells (P < 0.0001 and P = 0.1593, respectively). Live-cell imaging revealed an increased production of mitochondrial reactive oxygen species in cells stimulated with SsP compared with cells stimulated with HS-free serum (P < 0.0001). Expression of peroxisome proliferator-activated receptors (PPAR&agr; and PPAR&ggr;) and their co-activators PGC-1&agr;, which regulate mitochondrial function, were studied using PCR. Cells stimulated with SsP showed downregulated PPARs and PGC-1&agr; mRNA-levels compared with HS-free serum (P = 0.0082, P = 0.0128, and P = 0.0185, respectively). Blocking Toll-like receptor 4 revealed an inhibition of HS-dependent downregulation of PPARs and PGC-1&agr; (all P < 0.0001). In conclusion, circulating HS in serum of septic shock patients cause cardiac mitochondrial dysfunction, suggesting that HS may be targets of therapeutics in septic cardiomyopathy.","PeriodicalId":21787,"journal":{"name":"Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches","volume":"100 1","pages":"569–577"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Soluble Heparan Sulfate in Serum of Septic Shock Patients Induces Mitochondrial Dysfunction in Murine Cardiomyocytes\",\"authors\":\"L. Martin, Carsten Peters, S. Schmitz, J. Moellmann, Antons Martincuks, N. Heussen, M. Lehrke, G. Müller-Newen, G. Marx, T. Schuerholz\",\"doi\":\"10.1097/SHK.0000000000000462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The heart is one of the most frequently affected organs in sepsis. Recent studies focused on lipopolysaccharide-induced mitochondrial dysfunction; however myocardial dysfunction is not restricted to gram-negative bacterial sepsis. The purpose of this study was to investigate circulating heparan sulfate (HS) as an endogenous danger associated molecule causing cardiac mitochondrial dysfunction in sepsis. We used an in vitro model with native sera (SsP) and sera eliminated from HS (HS-free), both of septic shock patients, to stimulate murine cardiomyocytes. As determined by extracellular flux analyzing, SsP increased basal mitochondrial respiration, but reduced maximum mitochondrial respiration, compared with unstimulated cells (P < 0.0001 and P < 0.0001, respectively). Cells stimulated with HS-free serum revealed unaltered basal and maximum mitochondrial respiration, compared with unstimulated cells (P = 0.1174 and P = 0.8992, respectively). Cellular ATP-level were decreased in SsP-stimulated cells but unaltered in cells stimulated with HS-free serum compared with unstimulated cells (P < 0.0001 and P = 0.1593, respectively). Live-cell imaging revealed an increased production of mitochondrial reactive oxygen species in cells stimulated with SsP compared with cells stimulated with HS-free serum (P < 0.0001). Expression of peroxisome proliferator-activated receptors (PPAR&agr; and PPAR&ggr;) and their co-activators PGC-1&agr;, which regulate mitochondrial function, were studied using PCR. Cells stimulated with SsP showed downregulated PPARs and PGC-1&agr; mRNA-levels compared with HS-free serum (P = 0.0082, P = 0.0128, and P = 0.0185, respectively). Blocking Toll-like receptor 4 revealed an inhibition of HS-dependent downregulation of PPARs and PGC-1&agr; (all P < 0.0001). In conclusion, circulating HS in serum of septic shock patients cause cardiac mitochondrial dysfunction, suggesting that HS may be targets of therapeutics in septic cardiomyopathy.\",\"PeriodicalId\":21787,\"journal\":{\"name\":\"Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches\",\"volume\":\"100 1\",\"pages\":\"569–577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000000462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

心脏是脓毒症中最常见的受累器官之一。最近的研究主要集中在脂多糖诱导的线粒体功能障碍;然而,心肌功能障碍并不局限于革兰氏阴性细菌性败血症。本研究的目的是研究循环硫酸肝素(HS)作为一种内源性危险相关分子引起脓毒症患者心脏线粒体功能障碍。我们用感染性休克患者的天然血清(SsP)和从HS (HS-free)中去除的血清体外模型来刺激小鼠心肌细胞。细胞外通量分析表明,与未刺激的细胞相比,SsP增加了线粒体基础呼吸,但降低了线粒体最大呼吸(P < 0.0001和P < 0.0001)。与未刺激的细胞相比,经无hs血清刺激的细胞显示基本线粒体呼吸和最大线粒体呼吸没有变化(P = 0.1174和P = 0.8992)。与未刺激细胞相比,ssp刺激细胞的细胞atp水平降低,而无hs血清刺激细胞的细胞atp水平没有变化(P < 0.0001和P = 0.1593)。活细胞成像显示,与无hs血清刺激的细胞相比,受SsP刺激的细胞线粒体活性氧的产生增加(P < 0.0001)。过氧化物酶体增殖物激活受体(PPAR&agr)的表达和PPAR&ggr;)及其调控线粒体功能的共激活子PGC-1&agr;SsP刺激的细胞显示PPARs和PGC-1&agr下调;mrna水平与无hs血清比较(P = 0.0082, P = 0.0128, P = 0.0185)。阻断toll样受体4显示抑制hs依赖性PPARs和PGC-1&agr的下调;(均P < 0.0001)。综上所述,脓毒性休克患者血清循环HS可引起心肌线粒体功能障碍,提示HS可能是脓毒性心肌病治疗的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soluble Heparan Sulfate in Serum of Septic Shock Patients Induces Mitochondrial Dysfunction in Murine Cardiomyocytes
ABSTRACT The heart is one of the most frequently affected organs in sepsis. Recent studies focused on lipopolysaccharide-induced mitochondrial dysfunction; however myocardial dysfunction is not restricted to gram-negative bacterial sepsis. The purpose of this study was to investigate circulating heparan sulfate (HS) as an endogenous danger associated molecule causing cardiac mitochondrial dysfunction in sepsis. We used an in vitro model with native sera (SsP) and sera eliminated from HS (HS-free), both of septic shock patients, to stimulate murine cardiomyocytes. As determined by extracellular flux analyzing, SsP increased basal mitochondrial respiration, but reduced maximum mitochondrial respiration, compared with unstimulated cells (P < 0.0001 and P < 0.0001, respectively). Cells stimulated with HS-free serum revealed unaltered basal and maximum mitochondrial respiration, compared with unstimulated cells (P = 0.1174 and P = 0.8992, respectively). Cellular ATP-level were decreased in SsP-stimulated cells but unaltered in cells stimulated with HS-free serum compared with unstimulated cells (P < 0.0001 and P = 0.1593, respectively). Live-cell imaging revealed an increased production of mitochondrial reactive oxygen species in cells stimulated with SsP compared with cells stimulated with HS-free serum (P < 0.0001). Expression of peroxisome proliferator-activated receptors (PPAR&agr; and PPAR&ggr;) and their co-activators PGC-1&agr;, which regulate mitochondrial function, were studied using PCR. Cells stimulated with SsP showed downregulated PPARs and PGC-1&agr; mRNA-levels compared with HS-free serum (P = 0.0082, P = 0.0128, and P = 0.0185, respectively). Blocking Toll-like receptor 4 revealed an inhibition of HS-dependent downregulation of PPARs and PGC-1&agr; (all P < 0.0001). In conclusion, circulating HS in serum of septic shock patients cause cardiac mitochondrial dysfunction, suggesting that HS may be targets of therapeutics in septic cardiomyopathy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations—Protective Effects of the Oxygen Radical Scavenger Edaravone Soluble Heparan Sulfate in Serum of Septic Shock Patients Induces Mitochondrial Dysfunction in Murine Cardiomyocytes Effects of the 34C>T Variant of the AMPD1 Gene on Immune Function, Multi-Organ Dysfunction, and Mortality in Sepsis Patients Evaluation of Perfusion Index as a Predictor of Vasopressor Requirement in Patients with Severe Sepsis Predictors of the Onset of Hemodynamic Decompensation During Progressive Central Hypovolemia: Comparison of the Peripheral Perfusion Index, Pulse Pressure Variability, and Compensatory Reserve Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1