成骨细胞样细胞对一层一层自组装仿生涂层的反应

F. C. Soumetz, L. Pastorino, C. Ruggiero
{"title":"成骨细胞样细胞对一层一层自组装仿生涂层的反应","authors":"F. C. Soumetz, L. Pastorino, C. Ruggiero","doi":"10.1109/NANO.2007.4601255","DOIUrl":null,"url":null,"abstract":"Nanometer-sized structures have been found to interact with cell function and development. In tissue engineering, the fabrication of bioactive devices which mimic physiologic conditions has a key role in eliciting specific cellular responses and in guaranteeing long term success of implants. To this regard the layer by layer (LBL) self assembly technique is an efficient method to develop nanostructured thin films. This technique was used to assemble biomimetic coatings containing fibronectin, an adhesive glycoprotein of the extracellular matrix (ECM). The deposited films were then tested for the response of a line of human osteoblast-like cells in order to evaluate their potential for bone tissue repair purposes. The assembled films resulted to be effective in improving cell adhesion and proliferation. Therefore, this technique shows a high potential for the optimization of the surface properties of biomaterials.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"15 1","pages":"566-569"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteoblast-like cells response to layer by layer self assembled biomimetic coatings\",\"authors\":\"F. C. Soumetz, L. Pastorino, C. Ruggiero\",\"doi\":\"10.1109/NANO.2007.4601255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanometer-sized structures have been found to interact with cell function and development. In tissue engineering, the fabrication of bioactive devices which mimic physiologic conditions has a key role in eliciting specific cellular responses and in guaranteeing long term success of implants. To this regard the layer by layer (LBL) self assembly technique is an efficient method to develop nanostructured thin films. This technique was used to assemble biomimetic coatings containing fibronectin, an adhesive glycoprotein of the extracellular matrix (ECM). The deposited films were then tested for the response of a line of human osteoblast-like cells in order to evaluate their potential for bone tissue repair purposes. The assembled films resulted to be effective in improving cell adhesion and proliferation. Therefore, this technique shows a high potential for the optimization of the surface properties of biomaterials.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"15 1\",\"pages\":\"566-569\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构已被发现与细胞功能和发育相互作用。在组织工程中,模拟生理条件的生物活性装置的制造在引发特定细胞反应和保证植入物的长期成功方面起着关键作用。因此,单层自组装技术是制备纳米结构薄膜的一种有效方法。该技术用于组装含有纤维连接蛋白的仿生涂层,纤维连接蛋白是细胞外基质(ECM)的一种粘附糖蛋白。然后测试沉积的薄膜对人类成骨细胞样细胞的反应,以评估其用于骨组织修复目的的潜力。结果表明,组装膜能有效地促进细胞的粘附和增殖。因此,该技术在优化生物材料表面性能方面显示出很高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osteoblast-like cells response to layer by layer self assembled biomimetic coatings
Nanometer-sized structures have been found to interact with cell function and development. In tissue engineering, the fabrication of bioactive devices which mimic physiologic conditions has a key role in eliciting specific cellular responses and in guaranteeing long term success of implants. To this regard the layer by layer (LBL) self assembly technique is an efficient method to develop nanostructured thin films. This technique was used to assemble biomimetic coatings containing fibronectin, an adhesive glycoprotein of the extracellular matrix (ECM). The deposited films were then tested for the response of a line of human osteoblast-like cells in order to evaluate their potential for bone tissue repair purposes. The assembled films resulted to be effective in improving cell adhesion and proliferation. Therefore, this technique shows a high potential for the optimization of the surface properties of biomaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schrödinger Equation Monte Carlo-3D for simulation of nanoscale MOSFETs Young's Modulus of High Aspect Ratio Si3N4 Nano-thickness Membrane Quantum well nanomechanical actuators with atomic vertical resolution Study of nanopattern forming with chemical coatings for silicon-based stamp in nanoimprint process Surface energy induced patterning of polymer nanostructures for cancer diagnosis and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1