同时图像分类和恢复使用变分方法

Christophe Samson, L. Blanc-Féraud, J. Zerubia, G. Aubert
{"title":"同时图像分类和恢复使用变分方法","authors":"Christophe Samson, L. Blanc-Féraud, J. Zerubia, G. Aubert","doi":"10.1109/CVPR.1999.784985","DOIUrl":null,"url":null,"abstract":"Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper, we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries. The soundness of this model is based on the works developed on the phase transition theory in mechanics. The proposed algorithm is fast, easy to implement and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"8 1","pages":"618-623 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Simultaneous image classification and restoration using a variational approach\",\"authors\":\"Christophe Samson, L. Blanc-Féraud, J. Zerubia, G. Aubert\",\"doi\":\"10.1109/CVPR.1999.784985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper, we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries. The soundness of this model is based on the works developed on the phase transition theory in mechanics. The proposed algorithm is fast, easy to implement and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"8 1\",\"pages\":\"618-623 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在此,我们提出了一种用于图像分类的变分模型,并结合了保持边缘的正则化过程。近十年来,变分方法在边缘保持恢复领域的有效性得到了证明。在本文中,我们增加了一种分类能力,有助于提供具有正则化边界的均匀区域的图像复合。这个模型的正确性是建立在力学相变理论基础上的。该算法具有快速、易于实现和高效的特点。我们将合成图像和卫星图像的结果与使用Potts正则化的随机模型获得的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous image classification and restoration using a variational approach
Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper, we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries. The soundness of this model is based on the works developed on the phase transition theory in mechanics. The proposed algorithm is fast, easy to implement and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1