{"title":"深度造假用于医疗视频去识别:隐私保护和诊断信息保存","authors":"Bingquan Zhu, Hao Fang, Yanan Sui, Luming Li","doi":"10.1145/3375627.3375849","DOIUrl":null,"url":null,"abstract":"Data sharing for medical research has been difficult as open-sourcing clinical data may violate patient privacy. Traditional methods for face de-identification wipe out facial information entirely, making it impossible to analyze facial behavior. Recent advancements on whole-body keypoints detection also rely on facial input to estimate body keypoints. Both facial and body keypoints are critical in some medical diagnoses, and keypoints invariability after de-identification is of great importance. Here, we propose a solution using deepfake technology, the face swapping technique. While this swapping method has been criticized for invading privacy and portraiture right, it could conversely protect privacy in medical video: patients' faces could be swapped to a proper target face and become unrecognizable. However, it remained an open question that to what extent the swapping de-identification method could affect the automatic detection of body keypoints. In this study, we apply deepfake technology to Parkinson's disease examination videos to de-identify subjects, and quantitatively show that: face-swapping as a de-identification approach is reliable, and it keeps the keypoints almost invariant, significantly better than traditional methods. This study proposes a pipeline for video de-identification and keypoint preservation, clearing up some ethical restrictions for medical data sharing. This work could make open-source high quality medical video datasets more feasible and promote future medical research that benefits our society.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Deepfakes for Medical Video De-Identification: Privacy Protection and Diagnostic Information Preservation\",\"authors\":\"Bingquan Zhu, Hao Fang, Yanan Sui, Luming Li\",\"doi\":\"10.1145/3375627.3375849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data sharing for medical research has been difficult as open-sourcing clinical data may violate patient privacy. Traditional methods for face de-identification wipe out facial information entirely, making it impossible to analyze facial behavior. Recent advancements on whole-body keypoints detection also rely on facial input to estimate body keypoints. Both facial and body keypoints are critical in some medical diagnoses, and keypoints invariability after de-identification is of great importance. Here, we propose a solution using deepfake technology, the face swapping technique. While this swapping method has been criticized for invading privacy and portraiture right, it could conversely protect privacy in medical video: patients' faces could be swapped to a proper target face and become unrecognizable. However, it remained an open question that to what extent the swapping de-identification method could affect the automatic detection of body keypoints. In this study, we apply deepfake technology to Parkinson's disease examination videos to de-identify subjects, and quantitatively show that: face-swapping as a de-identification approach is reliable, and it keeps the keypoints almost invariant, significantly better than traditional methods. This study proposes a pipeline for video de-identification and keypoint preservation, clearing up some ethical restrictions for medical data sharing. This work could make open-source high quality medical video datasets more feasible and promote future medical research that benefits our society.\",\"PeriodicalId\":93612,\"journal\":{\"name\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375627.3375849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deepfakes for Medical Video De-Identification: Privacy Protection and Diagnostic Information Preservation
Data sharing for medical research has been difficult as open-sourcing clinical data may violate patient privacy. Traditional methods for face de-identification wipe out facial information entirely, making it impossible to analyze facial behavior. Recent advancements on whole-body keypoints detection also rely on facial input to estimate body keypoints. Both facial and body keypoints are critical in some medical diagnoses, and keypoints invariability after de-identification is of great importance. Here, we propose a solution using deepfake technology, the face swapping technique. While this swapping method has been criticized for invading privacy and portraiture right, it could conversely protect privacy in medical video: patients' faces could be swapped to a proper target face and become unrecognizable. However, it remained an open question that to what extent the swapping de-identification method could affect the automatic detection of body keypoints. In this study, we apply deepfake technology to Parkinson's disease examination videos to de-identify subjects, and quantitatively show that: face-swapping as a de-identification approach is reliable, and it keeps the keypoints almost invariant, significantly better than traditional methods. This study proposes a pipeline for video de-identification and keypoint preservation, clearing up some ethical restrictions for medical data sharing. This work could make open-source high quality medical video datasets more feasible and promote future medical research that benefits our society.