基于高斯混合模型和形态学运算的贝卡西收费公路车辆检测与分类

R. Kosasih
{"title":"基于高斯混合模型和形态学运算的贝卡西收费公路车辆检测与分类","authors":"R. Kosasih","doi":"10.35671/telematika.v15i1.1222","DOIUrl":null,"url":null,"abstract":"Traffic surveillance was initially carried out directly using CCTV, but this kind of surveillance was not possible for a full day by the security forces. In addition, with the increasing growth of vehicles in Indonesia, a method is needed that can be used to assist security forces in monitoring traffic such as detecting and automatically counting the number of vehicles. Therefore, in our research, we propose a method that can detect vehicles, and count the number of vehicles from video recordings on the Bintara Bekasi toll road using background substraction methods such as gaussian mixture models and morphological operations. The results showed that the vehicle detection accuracy rate was 86.3636%, the precision was 89.0625%, and the recall was 96.6101%. In this study, vehicle classification was also carried out based on the detection results into two types of vehicles, namely cars and trucks. From the results of the research, the classification accuracy rate was obtained at 85.9649%.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Classification of Vehicles on the Bekasi Toll Road Using the Gaussian Mixture Models Method and Morphological Operations\",\"authors\":\"R. Kosasih\",\"doi\":\"10.35671/telematika.v15i1.1222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic surveillance was initially carried out directly using CCTV, but this kind of surveillance was not possible for a full day by the security forces. In addition, with the increasing growth of vehicles in Indonesia, a method is needed that can be used to assist security forces in monitoring traffic such as detecting and automatically counting the number of vehicles. Therefore, in our research, we propose a method that can detect vehicles, and count the number of vehicles from video recordings on the Bintara Bekasi toll road using background substraction methods such as gaussian mixture models and morphological operations. The results showed that the vehicle detection accuracy rate was 86.3636%, the precision was 89.0625%, and the recall was 96.6101%. In this study, vehicle classification was also carried out based on the detection results into two types of vehicles, namely cars and trucks. From the results of the research, the classification accuracy rate was obtained at 85.9649%.\",\"PeriodicalId\":31716,\"journal\":{\"name\":\"Telematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35671/telematika.v15i1.1222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35671/telematika.v15i1.1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通监控最初是直接使用闭路电视进行的,但这种监控不可能由安全部队全天进行。此外,随着印度尼西亚车辆的不断增加,需要一种方法,可以用来协助安全部队监测交通,例如探测和自动计算车辆数量。因此,在我们的研究中,我们提出了一种可以检测车辆的方法,并利用高斯混合模型和形态学运算等背景减法方法从Bintara Bekasi收费公路的视频记录中统计车辆数量。结果表明,车辆检测准确率为86.3636%,精密度为89.0625%,召回率为96.6101%。在本研究中,还根据检测结果对车辆进行了分类,分为轿车和卡车两种类型。从研究结果来看,分类准确率为85.9649%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Classification of Vehicles on the Bekasi Toll Road Using the Gaussian Mixture Models Method and Morphological Operations
Traffic surveillance was initially carried out directly using CCTV, but this kind of surveillance was not possible for a full day by the security forces. In addition, with the increasing growth of vehicles in Indonesia, a method is needed that can be used to assist security forces in monitoring traffic such as detecting and automatically counting the number of vehicles. Therefore, in our research, we propose a method that can detect vehicles, and count the number of vehicles from video recordings on the Bintara Bekasi toll road using background substraction methods such as gaussian mixture models and morphological operations. The results showed that the vehicle detection accuracy rate was 86.3636%, the precision was 89.0625%, and the recall was 96.6101%. In this study, vehicle classification was also carried out based on the detection results into two types of vehicles, namely cars and trucks. From the results of the research, the classification accuracy rate was obtained at 85.9649%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1