A. Carvalho, D. Galindo, M. S. C. Tenório, J. G. O. Marinho
{"title":"卧式三相分离器的建模与仿真:进口流量的影响","authors":"A. Carvalho, D. Galindo, M. S. C. Tenório, J. G. O. Marinho","doi":"10.5419/bjpg2020-0012","DOIUrl":null,"url":null,"abstract":"The fluids produced and transported to the surface by the production manifolds do not have the necessary conditions to be economically viable. Produced fluids consist of at least three fluid phases (oil, water, and gas), besides impurities and contaminants. Therefore, the well stream should be processed as soon as possible after bringing it to the surface. Separator vessels are among the main equipment used at surface production facilities, being responsible for the separation of the produced phases. This work focuses in studying the fluid dynamic behavior in a horizontal three-phase separator. For this, we used the computational fluid dynamics software ANSYS CFX. First, a detailed analysis of a “Standard Case” was performed to better understand the entire separation process within the vessel. The results showed the three phases through simulation time, an analysis of the separation efficiency, an analysis of the different fluids flow lines, an analysis of the pressure gradient inside the vessel, and an analysis of the effect of the diverter baffle, as well as, a variation of fluid flow at the inlet of the separator.","PeriodicalId":9312,"journal":{"name":"Brazilian Journal of Petroleum and Gas","volume":"7 1","pages":"137-155"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING AND SIMULATION OF A HORIZONTAL THREE-PHASE SEPARATOR: INFLUENCE OF INLET FLOW\",\"authors\":\"A. Carvalho, D. Galindo, M. S. C. Tenório, J. G. O. Marinho\",\"doi\":\"10.5419/bjpg2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluids produced and transported to the surface by the production manifolds do not have the necessary conditions to be economically viable. Produced fluids consist of at least three fluid phases (oil, water, and gas), besides impurities and contaminants. Therefore, the well stream should be processed as soon as possible after bringing it to the surface. Separator vessels are among the main equipment used at surface production facilities, being responsible for the separation of the produced phases. This work focuses in studying the fluid dynamic behavior in a horizontal three-phase separator. For this, we used the computational fluid dynamics software ANSYS CFX. First, a detailed analysis of a “Standard Case” was performed to better understand the entire separation process within the vessel. The results showed the three phases through simulation time, an analysis of the separation efficiency, an analysis of the different fluids flow lines, an analysis of the pressure gradient inside the vessel, and an analysis of the effect of the diverter baffle, as well as, a variation of fluid flow at the inlet of the separator.\",\"PeriodicalId\":9312,\"journal\":{\"name\":\"Brazilian Journal of Petroleum and Gas\",\"volume\":\"7 1\",\"pages\":\"137-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Petroleum and Gas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5419/bjpg2020-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Petroleum and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5419/bjpg2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODELING AND SIMULATION OF A HORIZONTAL THREE-PHASE SEPARATOR: INFLUENCE OF INLET FLOW
The fluids produced and transported to the surface by the production manifolds do not have the necessary conditions to be economically viable. Produced fluids consist of at least three fluid phases (oil, water, and gas), besides impurities and contaminants. Therefore, the well stream should be processed as soon as possible after bringing it to the surface. Separator vessels are among the main equipment used at surface production facilities, being responsible for the separation of the produced phases. This work focuses in studying the fluid dynamic behavior in a horizontal three-phase separator. For this, we used the computational fluid dynamics software ANSYS CFX. First, a detailed analysis of a “Standard Case” was performed to better understand the entire separation process within the vessel. The results showed the three phases through simulation time, an analysis of the separation efficiency, an analysis of the different fluids flow lines, an analysis of the pressure gradient inside the vessel, and an analysis of the effect of the diverter baffle, as well as, a variation of fluid flow at the inlet of the separator.