回归分析中多重共线性的检测与消除

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Knowledge-Based and Intelligent Engineering Systems Pub Date : 2023-07-13 DOI:10.3233/kes-221622
Preeti Singh, Sarvpal H. Singh, M. Paprzycki
{"title":"回归分析中多重共线性的检测与消除","authors":"Preeti Singh, Sarvpal H. Singh, M. Paprzycki","doi":"10.3233/kes-221622","DOIUrl":null,"url":null,"abstract":"Multicollinearity occurs when there comes a high level of correlation between the independent variables. This correlation creates the problem because the independent variables should be independent. Higher the degree of correlation means more complex problems you will face while fitting the model and interpreting the results. In this paper, we have eliminated the problem of multicollinearity on the basis of Hatvalues. The variables with higher Hatvalues will be removed from the data before fitting the model. This paper presents the comparison of results achieved by the proposed technique and state of the art methods.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and elimination of multicollinearity in regression analysis\",\"authors\":\"Preeti Singh, Sarvpal H. Singh, M. Paprzycki\",\"doi\":\"10.3233/kes-221622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multicollinearity occurs when there comes a high level of correlation between the independent variables. This correlation creates the problem because the independent variables should be independent. Higher the degree of correlation means more complex problems you will face while fitting the model and interpreting the results. In this paper, we have eliminated the problem of multicollinearity on the basis of Hatvalues. The variables with higher Hatvalues will be removed from the data before fitting the model. This paper presents the comparison of results achieved by the proposed technique and state of the art methods.\",\"PeriodicalId\":44076,\"journal\":{\"name\":\"International Journal of Knowledge-Based and Intelligent Engineering Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Knowledge-Based and Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/kes-221622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-221622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

当自变量之间存在高度相关时,就会出现多重共线性。这种相关性产生了问题,因为自变量应该是独立的。相关性越高,意味着在拟合模型和解释结果时将面临更复杂的问题。在本文中,我们消除了基于hatvalue的多重共线性问题。在拟合模型之前,将具有较高hatvalue的变量从数据中删除。本文介绍了所提出的技术和目前最先进的方法取得的结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and elimination of multicollinearity in regression analysis
Multicollinearity occurs when there comes a high level of correlation between the independent variables. This correlation creates the problem because the independent variables should be independent. Higher the degree of correlation means more complex problems you will face while fitting the model and interpreting the results. In this paper, we have eliminated the problem of multicollinearity on the basis of Hatvalues. The variables with higher Hatvalues will be removed from the data before fitting the model. This paper presents the comparison of results achieved by the proposed technique and state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
22
期刊最新文献
On the optimal multi-objective design of fractional order PID controller with antlion optimization Eternal 1-security number of a fuzzy graph with level J Interval type-2 fuzzy approach for retinopathy detection in fundus images DeepGAN: Utilizing generative adversarial networks for improved deep learning Fast retrieval of multi-modal embeddings for e-commerce applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1