公路车对车环境下车辆速度实时预测策略

Ziyan Zhang, Dongwei Yao, Feng Wu, Junhao Shen
{"title":"公路车对车环境下车辆速度实时预测策略","authors":"Ziyan Zhang, Dongwei Yao, Feng Wu, Junhao Shen","doi":"10.1109/ITECAsia-Pacific56316.2022.9941847","DOIUrl":null,"url":null,"abstract":"To improve the prediction accuracy and calculation speed of vehicle velocity prediction under a highway vehicle-to-vehicle (V2V) environment, a velocity prediction strategy combined with traffic information is proposed under the corresponding scenario. First, the highway scenario is set up. In addition, the general regressive neural network (GRNN) combined with front vehicle information is used in the highway scenario, which constructs a GRNN velocity prediction model with multi-information fusion. Then the model in the highway scenario is simulated, and the optimal model parameters are extracted, which are used to verify the prediction model in other operating conditions. As a result, the simulation data shows that compared with the prediction strategy using only historical vehicle velocity data, the prediction accuracy of the fusion prediction strategy using the optimal parameters is improved by 14.4% in the highway scenario under the V2V environment.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"85 1","pages":"1-5"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Vehicle Velocity Prediction Strategy under Highway Vehicle-to-vehicle Environment\",\"authors\":\"Ziyan Zhang, Dongwei Yao, Feng Wu, Junhao Shen\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9941847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the prediction accuracy and calculation speed of vehicle velocity prediction under a highway vehicle-to-vehicle (V2V) environment, a velocity prediction strategy combined with traffic information is proposed under the corresponding scenario. First, the highway scenario is set up. In addition, the general regressive neural network (GRNN) combined with front vehicle information is used in the highway scenario, which constructs a GRNN velocity prediction model with multi-information fusion. Then the model in the highway scenario is simulated, and the optimal model parameters are extracted, which are used to verify the prediction model in other operating conditions. As a result, the simulation data shows that compared with the prediction strategy using only historical vehicle velocity data, the prediction accuracy of the fusion prediction strategy using the optimal parameters is improved by 14.4% in the highway scenario under the V2V environment.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"85 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

为了提高公路车对车(V2V)环境下车速预测的预测精度和计算速度,提出了相应场景下结合交通信息的车速预测策略。首先,设置高速公路场景。此外,在高速公路场景中,将广义回归神经网络(GRNN)与前方车辆信息相结合,构建了多信息融合的GRNN速度预测模型。然后对高速公路场景下的模型进行仿真,提取出最优的模型参数,用于验证其他工况下的预测模型。仿真结果表明,在V2V环境下的公路场景下,与仅使用历史车速数据的预测策略相比,使用最优参数的融合预测策略的预测精度提高了14.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time Vehicle Velocity Prediction Strategy under Highway Vehicle-to-vehicle Environment
To improve the prediction accuracy and calculation speed of vehicle velocity prediction under a highway vehicle-to-vehicle (V2V) environment, a velocity prediction strategy combined with traffic information is proposed under the corresponding scenario. First, the highway scenario is set up. In addition, the general regressive neural network (GRNN) combined with front vehicle information is used in the highway scenario, which constructs a GRNN velocity prediction model with multi-information fusion. Then the model in the highway scenario is simulated, and the optimal model parameters are extracted, which are used to verify the prediction model in other operating conditions. As a result, the simulation data shows that compared with the prediction strategy using only historical vehicle velocity data, the prediction accuracy of the fusion prediction strategy using the optimal parameters is improved by 14.4% in the highway scenario under the V2V environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
期刊最新文献
An Inertia Adjustment Control Strategy of Grid-Forming Electric Vehicle for V2G Application An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer Comparison and evaluation of the thermal performance between SiC-MOSFET and Si-IGBT Analysis and Design of Passive Damping for LC-Equipped Permanent-Magnet Synchronous Machine Drive System Research on dynamic pricing strategy of electric material distribution vehicle based on master-slave game and multi-hot code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1