P. Masella, G. Angeloni, L. Guerrini, A. Spadi, Ferdinando Corti, A. Parenti
{"title":"初榨橄榄油加工过程中泵送对溶解氧的贡献","authors":"P. Masella, G. Angeloni, L. Guerrini, A. Spadi, Ferdinando Corti, A. Parenti","doi":"10.3303/CET2187052","DOIUrl":null,"url":null,"abstract":"The overall quality of extra virgin olive oil (EVOO) strictly relates to the evolution of its oxidative state, which in turn depends on the amount of the oxygen availability during the product life, starting with the olive fruit milling. The issue of oil oxygenation during processing has been poorly studied. The few available literature assesses the relative contribution of three main processing steps (paste malaxation, decanter centrifugation, and vertical centrifugation) to the final dissolved oxygen concentration and the consequences on the oil quality decay during storage. Nevertheless, until now information about the contribution of the devices used to moves materials during processing, i.e. screw conveyor and pumps to move olive, olive paste and oil, to the amount of dissolved oxygen and in broader terms on the oil quality, are lacking. It can be reasonably assumed that the intact drupes handling during leaf-removal and washing before crushing, had a negligible effect on the final oil dissolved oxygen content, whereas from crusher to the decanter centrifuge by the malaxer, where olive paste handling occurs, a noticeable effect on the future oil characteristics could occur. The standard and widespread device used to move olive paste during processing, essentially from the crusher to the malaxer and from the malaxer to the decanter centrifuge, is the progressive cavity pump, commonly named mono-pump. Notices of other pumping devices used or proved in EVOO mills are missing. In the present work a peristaltic pump (roller pump) has been tested in comparison to the conventional mono-pump in a continuous centrifugal extraction plant. Specifically, the two pumps were alternatively used to feed the decanter centrifuge by empting the malaxation chambers. The oxygenation effect was assessed in terms of dissolved oxygen amount (DOA) in the produced EVOO, which were also compared for the main qualitative traits such as commercial parameters, phenolic and volatile profiles and phthalates occurrence being the peristaltic pump equipped with a phthalates-free tube. Basically, the qualitative effect of the two pumps significantly differs for the DOA with about 10% saving for the peristaltic pump. The latter also gives significantly (p","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"2 1","pages":"307-312"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pumping Contribution to Dissolved Oxygen in Virgin Olive Oil During Processing\",\"authors\":\"P. Masella, G. Angeloni, L. Guerrini, A. Spadi, Ferdinando Corti, A. Parenti\",\"doi\":\"10.3303/CET2187052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overall quality of extra virgin olive oil (EVOO) strictly relates to the evolution of its oxidative state, which in turn depends on the amount of the oxygen availability during the product life, starting with the olive fruit milling. The issue of oil oxygenation during processing has been poorly studied. The few available literature assesses the relative contribution of three main processing steps (paste malaxation, decanter centrifugation, and vertical centrifugation) to the final dissolved oxygen concentration and the consequences on the oil quality decay during storage. Nevertheless, until now information about the contribution of the devices used to moves materials during processing, i.e. screw conveyor and pumps to move olive, olive paste and oil, to the amount of dissolved oxygen and in broader terms on the oil quality, are lacking. It can be reasonably assumed that the intact drupes handling during leaf-removal and washing before crushing, had a negligible effect on the final oil dissolved oxygen content, whereas from crusher to the decanter centrifuge by the malaxer, where olive paste handling occurs, a noticeable effect on the future oil characteristics could occur. The standard and widespread device used to move olive paste during processing, essentially from the crusher to the malaxer and from the malaxer to the decanter centrifuge, is the progressive cavity pump, commonly named mono-pump. Notices of other pumping devices used or proved in EVOO mills are missing. In the present work a peristaltic pump (roller pump) has been tested in comparison to the conventional mono-pump in a continuous centrifugal extraction plant. Specifically, the two pumps were alternatively used to feed the decanter centrifuge by empting the malaxation chambers. The oxygenation effect was assessed in terms of dissolved oxygen amount (DOA) in the produced EVOO, which were also compared for the main qualitative traits such as commercial parameters, phenolic and volatile profiles and phthalates occurrence being the peristaltic pump equipped with a phthalates-free tube. Basically, the qualitative effect of the two pumps significantly differs for the DOA with about 10% saving for the peristaltic pump. The latter also gives significantly (p\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"2 1\",\"pages\":\"307-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Pumping Contribution to Dissolved Oxygen in Virgin Olive Oil During Processing
The overall quality of extra virgin olive oil (EVOO) strictly relates to the evolution of its oxidative state, which in turn depends on the amount of the oxygen availability during the product life, starting with the olive fruit milling. The issue of oil oxygenation during processing has been poorly studied. The few available literature assesses the relative contribution of three main processing steps (paste malaxation, decanter centrifugation, and vertical centrifugation) to the final dissolved oxygen concentration and the consequences on the oil quality decay during storage. Nevertheless, until now information about the contribution of the devices used to moves materials during processing, i.e. screw conveyor and pumps to move olive, olive paste and oil, to the amount of dissolved oxygen and in broader terms on the oil quality, are lacking. It can be reasonably assumed that the intact drupes handling during leaf-removal and washing before crushing, had a negligible effect on the final oil dissolved oxygen content, whereas from crusher to the decanter centrifuge by the malaxer, where olive paste handling occurs, a noticeable effect on the future oil characteristics could occur. The standard and widespread device used to move olive paste during processing, essentially from the crusher to the malaxer and from the malaxer to the decanter centrifuge, is the progressive cavity pump, commonly named mono-pump. Notices of other pumping devices used or proved in EVOO mills are missing. In the present work a peristaltic pump (roller pump) has been tested in comparison to the conventional mono-pump in a continuous centrifugal extraction plant. Specifically, the two pumps were alternatively used to feed the decanter centrifuge by empting the malaxation chambers. The oxygenation effect was assessed in terms of dissolved oxygen amount (DOA) in the produced EVOO, which were also compared for the main qualitative traits such as commercial parameters, phenolic and volatile profiles and phthalates occurrence being the peristaltic pump equipped with a phthalates-free tube. Basically, the qualitative effect of the two pumps significantly differs for the DOA with about 10% saving for the peristaltic pump. The latter also gives significantly (p
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering