Axcelis Purion平台离子植入器的污染控制

D. Kirkwood, J. Deluca, Jonathan David
{"title":"Axcelis Purion平台离子植入器的污染控制","authors":"D. Kirkwood, J. Deluca, Jonathan David","doi":"10.1109/IIT.2014.6940036","DOIUrl":null,"url":null,"abstract":"Industry consolidation in semiconductor manufacturing, driven by commoditization and decreasing margins, is placing ever increasing pressure on fab productivity. Concomitant technology innovation, shrinking device geometries, the transition to non-planar transistors and novel device structures (such as CIS or IGBT) make yield attainment increasingly challenging. The defect level performance of semiconductor manufacturing equipment, in particular in ion implantation, is one of the critical parameters contributing to overall yield performance. This is evidenced through recent large shifts in both particle and metals requirements from device manufacturers. Traditional implanter design approaches, focused on glitch reduction or beam current modulation, are necessary but insufficient to attain simultaneous compliance of availability, throughput and defect levels. In this paper, a holistic approach to defect control is detailed. Examples of contamination control best practices are described. These are combined into an overarching design for process cleanliness (DfPC) methodology, through identification and mitigation of defect opportunities (particulates, metals). Data from the Purion platform of ion implanters demonstrate that, through application of an integrated, common design method, required defect performance can be attained across multiple ion implant platforms.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contamination control in Axcelis Purion platform ion implanters\",\"authors\":\"D. Kirkwood, J. Deluca, Jonathan David\",\"doi\":\"10.1109/IIT.2014.6940036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industry consolidation in semiconductor manufacturing, driven by commoditization and decreasing margins, is placing ever increasing pressure on fab productivity. Concomitant technology innovation, shrinking device geometries, the transition to non-planar transistors and novel device structures (such as CIS or IGBT) make yield attainment increasingly challenging. The defect level performance of semiconductor manufacturing equipment, in particular in ion implantation, is one of the critical parameters contributing to overall yield performance. This is evidenced through recent large shifts in both particle and metals requirements from device manufacturers. Traditional implanter design approaches, focused on glitch reduction or beam current modulation, are necessary but insufficient to attain simultaneous compliance of availability, throughput and defect levels. In this paper, a holistic approach to defect control is detailed. Examples of contamination control best practices are described. These are combined into an overarching design for process cleanliness (DfPC) methodology, through identification and mitigation of defect opportunities (particulates, metals). Data from the Purion platform of ion implanters demonstrate that, through application of an integrated, common design method, required defect performance can be attained across multiple ion implant platforms.\",\"PeriodicalId\":6548,\"journal\":{\"name\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"volume\":\"3 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2014.6940036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6940036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在商品化和利润率下降的推动下,半导体制造业的行业整合给晶圆厂的生产率带来了越来越大的压力。伴随而来的技术创新、器件几何尺寸的缩小、向非平面晶体管的过渡和新型器件结构(如CIS或IGBT)使得成品率的实现越来越具有挑战性。半导体制造设备的缺陷水平性能,特别是离子注入性能,是影响整体良率性能的关键参数之一。最近设备制造商对颗粒和金属的需求发生了巨大变化,这一点得到了证明。传统的植入器设计方法,侧重于减少故障或光束电流调制,是必要的,但不足以同时满足可用性,吞吐量和缺陷水平。本文详细介绍了缺陷控制的整体方法。描述了污染控制最佳实践的例子。通过识别和减少缺陷机会(颗粒、金属),这些组合成一个过程清洁度(DfPC)方法的总体设计。来自离子注入器Purion平台的数据表明,通过应用一种集成的、通用的设计方法,可以跨多个离子注入平台获得所需的缺陷性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contamination control in Axcelis Purion platform ion implanters
Industry consolidation in semiconductor manufacturing, driven by commoditization and decreasing margins, is placing ever increasing pressure on fab productivity. Concomitant technology innovation, shrinking device geometries, the transition to non-planar transistors and novel device structures (such as CIS or IGBT) make yield attainment increasingly challenging. The defect level performance of semiconductor manufacturing equipment, in particular in ion implantation, is one of the critical parameters contributing to overall yield performance. This is evidenced through recent large shifts in both particle and metals requirements from device manufacturers. Traditional implanter design approaches, focused on glitch reduction or beam current modulation, are necessary but insufficient to attain simultaneous compliance of availability, throughput and defect levels. In this paper, a holistic approach to defect control is detailed. Examples of contamination control best practices are described. These are combined into an overarching design for process cleanliness (DfPC) methodology, through identification and mitigation of defect opportunities (particulates, metals). Data from the Purion platform of ion implanters demonstrate that, through application of an integrated, common design method, required defect performance can be attained across multiple ion implant platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increase of sp3 content in a-C films with gas cluster ion beam bombardments; XPS and NEXAFS study NMOS source-drain extension ion implantation into heated substrates Activation of low-dose Si+ implant into In0.53Ga0.47As with Al+ and P+ co-implants The features of cold boron implantation in silicon Plasma Doping optimizing knock-on effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1