Tingting Fu, Yihui Liu, Jinyong Cheng, Qiang Liu, Baopeng Li
{"title":"基于支持向量机的31P MRS数据诊断肝细胞癌","authors":"Tingting Fu, Yihui Liu, Jinyong Cheng, Qiang Liu, Baopeng Li","doi":"10.1109/BMEI.2009.5302035","DOIUrl":null,"url":null,"abstract":"SVM (Support Vector Machine) is a new machinelearning technique which is developed based on statistical theory and it is applied in the various fields in recent years. We use SVM model based on P MRS (Phosphorus magnetic resonance spectroscopy) data to distinguish three categories of hepatocellular carcinoma, hepatic cirrhosis and normal hepatic tissue. The recognition accuracy of the three categories was obtained, and the classification accuracy of SVM based on polynomial and radial basis function kernel is compared. The result of experiments shows that SVM model based on P MRS data provides diagnostic prediction of liver in vivo, and the performance based on polynomial is better than based on radial basis function kernel. KeywordsSVM; 31P MRS; Kernel Function; Hepatocellular Carcinoma","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":"33 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"31P MRS Data Diagnosis of Hepatocellular Carcinoma Based on Support Vector Machine\",\"authors\":\"Tingting Fu, Yihui Liu, Jinyong Cheng, Qiang Liu, Baopeng Li\",\"doi\":\"10.1109/BMEI.2009.5302035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SVM (Support Vector Machine) is a new machinelearning technique which is developed based on statistical theory and it is applied in the various fields in recent years. We use SVM model based on P MRS (Phosphorus magnetic resonance spectroscopy) data to distinguish three categories of hepatocellular carcinoma, hepatic cirrhosis and normal hepatic tissue. The recognition accuracy of the three categories was obtained, and the classification accuracy of SVM based on polynomial and radial basis function kernel is compared. The result of experiments shows that SVM model based on P MRS data provides diagnostic prediction of liver in vivo, and the performance based on polynomial is better than based on radial basis function kernel. KeywordsSVM; 31P MRS; Kernel Function; Hepatocellular Carcinoma\",\"PeriodicalId\":6389,\"journal\":{\"name\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"volume\":\"33 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2009.5302035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5302035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
支持向量机是近年来在统计理论的基础上发展起来的一种新的机器学习技术,在各个领域得到了广泛的应用。我们使用基于P MRS(磷磁共振波谱)数据的SVM模型来区分肝细胞癌、肝硬化和正常肝组织三种类型。得到了三类的识别精度,并比较了基于多项式和径向基函数核的支持向量机的分类精度。实验结果表明,基于P - MRS数据的SVM模型能够提供活体肝脏的诊断预测,且基于多项式的性能优于基于径向基函数核的性能。KeywordsSVM;31 p MRS;核函数;肝细胞癌
31P MRS Data Diagnosis of Hepatocellular Carcinoma Based on Support Vector Machine
SVM (Support Vector Machine) is a new machinelearning technique which is developed based on statistical theory and it is applied in the various fields in recent years. We use SVM model based on P MRS (Phosphorus magnetic resonance spectroscopy) data to distinguish three categories of hepatocellular carcinoma, hepatic cirrhosis and normal hepatic tissue. The recognition accuracy of the three categories was obtained, and the classification accuracy of SVM based on polynomial and radial basis function kernel is compared. The result of experiments shows that SVM model based on P MRS data provides diagnostic prediction of liver in vivo, and the performance based on polynomial is better than based on radial basis function kernel. KeywordsSVM; 31P MRS; Kernel Function; Hepatocellular Carcinoma