Mazbahur Rahman Khan, S. Motakabber, Ahm Zahirul Alam, Syed Ahmad Fawwaz Wafa
{"title":"光伏板电池充电系统的模糊逻辑和PI控制器","authors":"Mazbahur Rahman Khan, S. Motakabber, Ahm Zahirul Alam, Syed Ahmad Fawwaz Wafa","doi":"10.31436/iiumej.v23i2.2385","DOIUrl":null,"url":null,"abstract":"Due to the nonlinear property of the PV panels, there are a few significant restrictions and limitations in the PV solar system. The PV panels always have to depend on environmental conditions such as temperature and solar radiation to generate efficient power. This paper proposed an optimum control system that can handle the uncertainties and nonlinearities of any system by using the Fuzzy Logic Control system (FLC). The proposed system utilized an FLC system for a DC-DC boost converter, tracking the PV panel’s maximum power point (MPPT). A PI control system is also used to maintain the continuous power supply for an optimum battery charging system for the DC-DC Buck converter. The goal is to provide constant voltage and appropriate current for charging the battery. It will increase the system efficiency and reduce the losses. It would also increase the battery life cycle and help the battery to charge fast. There are several MPPT methods found in the literature. The FLC can make a precise decision by considering the environmental state of the system. It can get a response to nonlinear environmental conditions instantly. The proposed system yielded an expected accuracy of 92% to 96%, with a system efficiency of 76% to 83%. Besides, it does not require any knowledge about the system since it is a rule-based system. The entire system has been designed in MATLAB/Simulink. The simulation results have been analyzed under 9 environmental states in a 1.0 s period.\nABSTRAK: Berdasarkan struktur tak linear panel PV, terdapat beberapa faktor kekangan yang jelas dan had tertentu dalam sistem solar PV. Panel PV selalunya sering bergantung kepada kondisi persekitaran seperti suhu dan radiasi solar bagi menghasilkan tenaga optimum. Kajian ini mencadangkan sistem kawalan optimum yang dapat mengawal ketidaktentuan dan ketidak linearan apa-apa sistem menggunakan sistem Kawalan Logik Fuzi (FLC). Sistem yang dicadangkan ini menggunakan sistem FLC bagi penukaran penggalak DC-DC, mengesan titik tenaga maksimum panel PV (MPPT). Sistem Kawalan PI turut digunakan bagi menyediakan bekalan tenaga berterusan untuk sistem pengecas bateri optimum melalui penukaran Balik DC-DC. Matlamat adalah bagi menghasilkan voltan berterusan & arus mencukupi bagi mengecas bateri. Ia dapat meningkatkan kecekapan sistem dan mengurangkan pembaziran tenaga. Ia juga dapat meningkatkan kitaran hayat bateri dan membantu bateri mengecas dengan cepat. Terdapat beberapa kaedah MPPT dijumpai dalam kajian terdahulu. FLC dapat menghasilkan keputusan tepat dengan mengambil kira keadaan persekitaran pada sistem tersebut. Ia dapat memberi respon kepada keadaan persekitaran tak linear dengan serta merta. Sistem yang dicadangkan menghasilkan ketepatan yang dijangkakan sebanyak 92% hingga 96%, dengan kecekapan sistem sebanyak 76% hingga 83%. Selain itu, ia tidak memerlukan apa-apa pengetahuan tentang sistem tersebut kerana sistem ini berdasarkan aturan. Keseluruhan sistem dibangunkan menggunakan MATLAB/Simulink. Dapatan simulasi dikaji menggunakan 9 tahap persekitaran dalam tempoh 1.0 s.","PeriodicalId":13439,"journal":{"name":"IIUM Engineering Journal","volume":"3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Logic and PI Controller for Photovoltaic Panel Battery Charging System\",\"authors\":\"Mazbahur Rahman Khan, S. Motakabber, Ahm Zahirul Alam, Syed Ahmad Fawwaz Wafa\",\"doi\":\"10.31436/iiumej.v23i2.2385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the nonlinear property of the PV panels, there are a few significant restrictions and limitations in the PV solar system. The PV panels always have to depend on environmental conditions such as temperature and solar radiation to generate efficient power. This paper proposed an optimum control system that can handle the uncertainties and nonlinearities of any system by using the Fuzzy Logic Control system (FLC). The proposed system utilized an FLC system for a DC-DC boost converter, tracking the PV panel’s maximum power point (MPPT). A PI control system is also used to maintain the continuous power supply for an optimum battery charging system for the DC-DC Buck converter. The goal is to provide constant voltage and appropriate current for charging the battery. It will increase the system efficiency and reduce the losses. It would also increase the battery life cycle and help the battery to charge fast. There are several MPPT methods found in the literature. The FLC can make a precise decision by considering the environmental state of the system. It can get a response to nonlinear environmental conditions instantly. The proposed system yielded an expected accuracy of 92% to 96%, with a system efficiency of 76% to 83%. Besides, it does not require any knowledge about the system since it is a rule-based system. The entire system has been designed in MATLAB/Simulink. The simulation results have been analyzed under 9 environmental states in a 1.0 s period.\\nABSTRAK: Berdasarkan struktur tak linear panel PV, terdapat beberapa faktor kekangan yang jelas dan had tertentu dalam sistem solar PV. Panel PV selalunya sering bergantung kepada kondisi persekitaran seperti suhu dan radiasi solar bagi menghasilkan tenaga optimum. Kajian ini mencadangkan sistem kawalan optimum yang dapat mengawal ketidaktentuan dan ketidak linearan apa-apa sistem menggunakan sistem Kawalan Logik Fuzi (FLC). Sistem yang dicadangkan ini menggunakan sistem FLC bagi penukaran penggalak DC-DC, mengesan titik tenaga maksimum panel PV (MPPT). Sistem Kawalan PI turut digunakan bagi menyediakan bekalan tenaga berterusan untuk sistem pengecas bateri optimum melalui penukaran Balik DC-DC. Matlamat adalah bagi menghasilkan voltan berterusan & arus mencukupi bagi mengecas bateri. Ia dapat meningkatkan kecekapan sistem dan mengurangkan pembaziran tenaga. Ia juga dapat meningkatkan kitaran hayat bateri dan membantu bateri mengecas dengan cepat. Terdapat beberapa kaedah MPPT dijumpai dalam kajian terdahulu. FLC dapat menghasilkan keputusan tepat dengan mengambil kira keadaan persekitaran pada sistem tersebut. Ia dapat memberi respon kepada keadaan persekitaran tak linear dengan serta merta. Sistem yang dicadangkan menghasilkan ketepatan yang dijangkakan sebanyak 92% hingga 96%, dengan kecekapan sistem sebanyak 76% hingga 83%. Selain itu, ia tidak memerlukan apa-apa pengetahuan tentang sistem tersebut kerana sistem ini berdasarkan aturan. Keseluruhan sistem dibangunkan menggunakan MATLAB/Simulink. Dapatan simulasi dikaji menggunakan 9 tahap persekitaran dalam tempoh 1.0 s.\",\"PeriodicalId\":13439,\"journal\":{\"name\":\"IIUM Engineering Journal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIUM Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31436/iiumej.v23i2.2385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIUM Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/iiumej.v23i2.2385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
由于光伏板的非线性特性,光伏太阳能系统存在一些明显的限制和限制。光伏板总是依赖于环境条件,如温度和太阳辐射,以产生有效的电力。本文提出了一种利用模糊逻辑控制系统(FLC)处理任意系统的不确定性和非线性的最优控制系统。该系统利用FLC系统作为DC-DC升压转换器,跟踪光伏板的最大功率点(MPPT)。一个PI控制系统也被用来维持一个最佳的电池充电系统的DC-DC降压变换器的连续供电。目标是为电池充电提供恒定的电压和适当的电流。它将提高系统效率,减少损失。它还可以延长电池的寿命周期,帮助电池快速充电。在文献中发现了几种MPPT方法。FLC可以通过考虑系统的环境状态来做出精确的决策。它能对非线性环境条件作出即时响应。该系统的预期准确率为92%至96%,系统效率为76%至83%。此外,它不需要任何关于系统的知识,因为它是一个基于规则的系统。整个系统在MATLAB/Simulink中进行了设计。对1.0 s周期内9种环境状态下的仿真结果进行了分析。摘要:贝尔达萨尔坎构造采用线状面板光伏,在克尔达萨尔坎阳jelas采用线状面板光伏。太阳能电池板,太阳能板,太阳能板,太阳能板,太阳能板,太阳能板,太阳能板,太阳能板,太阳能板,太阳能板,太阳能板。喀坚尼、门坎坎系统、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼、喀坚尼。系统yang dicadangkan ini menggunakan系统FLC bagi penukaran penggalak DC-DC, mengesan titik tenaga maksimum面板PV (MPPT)。系统Kawalan PI turut digunakan bagi menyediakan bekalan tenaga berterusan untuk系统pengecas电池最优melali penukaran Balik DC-DC。Matlamat adalah bagi menghasilkan voltan berterusan & arus mencukupi bagi mengecas bateri。Ia dapat meningkatkan keecekapan system dan mengurangkan pembaziran tenaga。Ia juga dapat meningkatkan kitaran hayat bateri dan membantu bateri mengecas dengan cepat。Terdapat beberapa kaedah MPPT dijumpai dalam kajian terdahulu。FLC dapat menghasilkan keputusan tepat dengan mengbil kira keadan and persekitan patan system terseet。在这一过程中,成员们的反应是保持不变的,保持不变的,保持不变的。系统杨dicadangkan menghasilkan ketepatan杨dijangkakan sebanyak 92%兴嘎96%,登干keecekapan系统sebanyak 76%兴嘎83%。Selain itu, ia tidak memlukan apa-apa pengetahuan tentang系统,但kerana系统berdasarkan aturan。克塞鲁汗系统dibangunkan menggunakan MATLAB/Simulink。1. datatan simulasi dikaji menggunakan 9 tahap persekitaran dalam tempoh 1.0 s。
Fuzzy Logic and PI Controller for Photovoltaic Panel Battery Charging System
Due to the nonlinear property of the PV panels, there are a few significant restrictions and limitations in the PV solar system. The PV panels always have to depend on environmental conditions such as temperature and solar radiation to generate efficient power. This paper proposed an optimum control system that can handle the uncertainties and nonlinearities of any system by using the Fuzzy Logic Control system (FLC). The proposed system utilized an FLC system for a DC-DC boost converter, tracking the PV panel’s maximum power point (MPPT). A PI control system is also used to maintain the continuous power supply for an optimum battery charging system for the DC-DC Buck converter. The goal is to provide constant voltage and appropriate current for charging the battery. It will increase the system efficiency and reduce the losses. It would also increase the battery life cycle and help the battery to charge fast. There are several MPPT methods found in the literature. The FLC can make a precise decision by considering the environmental state of the system. It can get a response to nonlinear environmental conditions instantly. The proposed system yielded an expected accuracy of 92% to 96%, with a system efficiency of 76% to 83%. Besides, it does not require any knowledge about the system since it is a rule-based system. The entire system has been designed in MATLAB/Simulink. The simulation results have been analyzed under 9 environmental states in a 1.0 s period.
ABSTRAK: Berdasarkan struktur tak linear panel PV, terdapat beberapa faktor kekangan yang jelas dan had tertentu dalam sistem solar PV. Panel PV selalunya sering bergantung kepada kondisi persekitaran seperti suhu dan radiasi solar bagi menghasilkan tenaga optimum. Kajian ini mencadangkan sistem kawalan optimum yang dapat mengawal ketidaktentuan dan ketidak linearan apa-apa sistem menggunakan sistem Kawalan Logik Fuzi (FLC). Sistem yang dicadangkan ini menggunakan sistem FLC bagi penukaran penggalak DC-DC, mengesan titik tenaga maksimum panel PV (MPPT). Sistem Kawalan PI turut digunakan bagi menyediakan bekalan tenaga berterusan untuk sistem pengecas bateri optimum melalui penukaran Balik DC-DC. Matlamat adalah bagi menghasilkan voltan berterusan & arus mencukupi bagi mengecas bateri. Ia dapat meningkatkan kecekapan sistem dan mengurangkan pembaziran tenaga. Ia juga dapat meningkatkan kitaran hayat bateri dan membantu bateri mengecas dengan cepat. Terdapat beberapa kaedah MPPT dijumpai dalam kajian terdahulu. FLC dapat menghasilkan keputusan tepat dengan mengambil kira keadaan persekitaran pada sistem tersebut. Ia dapat memberi respon kepada keadaan persekitaran tak linear dengan serta merta. Sistem yang dicadangkan menghasilkan ketepatan yang dijangkakan sebanyak 92% hingga 96%, dengan kecekapan sistem sebanyak 76% hingga 83%. Selain itu, ia tidak memerlukan apa-apa pengetahuan tentang sistem tersebut kerana sistem ini berdasarkan aturan. Keseluruhan sistem dibangunkan menggunakan MATLAB/Simulink. Dapatan simulasi dikaji menggunakan 9 tahap persekitaran dalam tempoh 1.0 s.
期刊介绍:
The IIUM Engineering Journal, published biannually (June and December), is a peer-reviewed open-access journal of the Faculty of Engineering, International Islamic University Malaysia (IIUM). The IIUM Engineering Journal publishes original research findings as regular papers, review papers (by invitation). The Journal provides a platform for Engineers, Researchers, Academicians, and Practitioners who are highly motivated in contributing to the Engineering disciplines, and Applied Sciences. It also welcomes contributions that address solutions to the specific challenges of the developing world, and address science and technology issues from an Islamic and multidisciplinary perspective. Subject areas suitable for publication are as follows: -Chemical and Biotechnology Engineering -Civil and Environmental Engineering -Computer Science and Information Technology -Electrical, Computer, and Communications Engineering -Engineering Mathematics and Applied Science -Materials and Manufacturing Engineering -Mechanical and Aerospace Engineering -Mechatronics and Automation Engineering