{"title":"低功率磁微致动用Cu-Ni纳米复合材料的合成与器件制作","authors":"Y. Huang, T. Chao, Y. Cheng","doi":"10.1109/NANO.2007.4601328","DOIUrl":null,"url":null,"abstract":"This paper presents a Cu-Ni nanocomposite film and related CMOS compatible fabrication process using alkaline noncyanide based copper plating solution for low power magnetic microactuation application. The magnetic properties of Cu can be modified from diamagnetism to ferromagnetism via the incorporation of Ni nanoparticles into a Cu matrix to form a Cu-Ni nanocomposite film. Experimental results show that about 9% power consumption reduction of magnetic microactuation could be realized while the actuated coil is made of the Cu-Ni nanocomposite instead of pure Cu. The effective power reduction can be attributed to the magnetic flux density intensification inside the coil.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"54 1","pages":"899-902"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and device fabrication of Cu-Ni nanocomposite for low power magnetic microactuation\",\"authors\":\"Y. Huang, T. Chao, Y. Cheng\",\"doi\":\"10.1109/NANO.2007.4601328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Cu-Ni nanocomposite film and related CMOS compatible fabrication process using alkaline noncyanide based copper plating solution for low power magnetic microactuation application. The magnetic properties of Cu can be modified from diamagnetism to ferromagnetism via the incorporation of Ni nanoparticles into a Cu matrix to form a Cu-Ni nanocomposite film. Experimental results show that about 9% power consumption reduction of magnetic microactuation could be realized while the actuated coil is made of the Cu-Ni nanocomposite instead of pure Cu. The effective power reduction can be attributed to the magnetic flux density intensification inside the coil.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"54 1\",\"pages\":\"899-902\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and device fabrication of Cu-Ni nanocomposite for low power magnetic microactuation
This paper presents a Cu-Ni nanocomposite film and related CMOS compatible fabrication process using alkaline noncyanide based copper plating solution for low power magnetic microactuation application. The magnetic properties of Cu can be modified from diamagnetism to ferromagnetism via the incorporation of Ni nanoparticles into a Cu matrix to form a Cu-Ni nanocomposite film. Experimental results show that about 9% power consumption reduction of magnetic microactuation could be realized while the actuated coil is made of the Cu-Ni nanocomposite instead of pure Cu. The effective power reduction can be attributed to the magnetic flux density intensification inside the coil.