基于变分模态分解和置换熵的单向阀故障诊断方法

Zhen Pan, Guoyong Huang, Yugang Fan
{"title":"基于变分模态分解和置换熵的单向阀故障诊断方法","authors":"Zhen Pan, Guoyong Huang, Yugang Fan","doi":"10.1109/DDCLS.2019.8909065","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the vibration signal of the check valve has background noise and low fault recognition rate, a signal characteristics extraction method based on variational mode decomposition and permutation entropy was proposed. The extreme learning machine was used for fault recognition. Firstly, the check valve vibration signal was decomposed by the variational mode decomposition, and the intrinsic mode functions were obtained in different scales. Secondly, the permutation entropy of each intrinsic mode function was calculated and used to compose the multiscale feature vector. Finally, the high-dimensional feature vector was input to the extreme learning machine for check valve fault diagnosis. The comparison is made with EEMD and LCD (local characteristic-scale decomposition). The experimental results show that the method can effectively identify the fault type of the check valve.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"33 1","pages":"650-655"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Check Valve Fault Diagnosis Method Based on Variational Mode Decomposition and Permutation Entropy\",\"authors\":\"Zhen Pan, Guoyong Huang, Yugang Fan\",\"doi\":\"10.1109/DDCLS.2019.8909065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem that the vibration signal of the check valve has background noise and low fault recognition rate, a signal characteristics extraction method based on variational mode decomposition and permutation entropy was proposed. The extreme learning machine was used for fault recognition. Firstly, the check valve vibration signal was decomposed by the variational mode decomposition, and the intrinsic mode functions were obtained in different scales. Secondly, the permutation entropy of each intrinsic mode function was calculated and used to compose the multiscale feature vector. Finally, the high-dimensional feature vector was input to the extreme learning machine for check valve fault diagnosis. The comparison is made with EEMD and LCD (local characteristic-scale decomposition). The experimental results show that the method can effectively identify the fault type of the check valve.\",\"PeriodicalId\":6699,\"journal\":{\"name\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"33 1\",\"pages\":\"650-655\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2019.8909065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8909065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对单向阀振动信号存在背景噪声和故障识别率低的问题,提出了一种基于变分模态分解和排列熵的信号特征提取方法。采用极限学习机进行故障识别。首先,对单向阀振动信号进行变分模态分解,得到不同尺度下单向阀的固有模态函数;其次,计算各本征模态函数的排列熵,并利用其组成多尺度特征向量;最后,将高维特征向量输入极限学习机进行单向阀故障诊断。并与EEMD和LCD(局部特征尺度分解)进行了比较。实验结果表明,该方法能有效地识别止回阀的故障类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Check Valve Fault Diagnosis Method Based on Variational Mode Decomposition and Permutation Entropy
Aiming at the problem that the vibration signal of the check valve has background noise and low fault recognition rate, a signal characteristics extraction method based on variational mode decomposition and permutation entropy was proposed. The extreme learning machine was used for fault recognition. Firstly, the check valve vibration signal was decomposed by the variational mode decomposition, and the intrinsic mode functions were obtained in different scales. Secondly, the permutation entropy of each intrinsic mode function was calculated and used to compose the multiscale feature vector. Finally, the high-dimensional feature vector was input to the extreme learning machine for check valve fault diagnosis. The comparison is made with EEMD and LCD (local characteristic-scale decomposition). The experimental results show that the method can effectively identify the fault type of the check valve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental Conductance Method Based on Fuzzy Control Simulation of the Array Signals Processing Based on Automatic Gain Control for Two-Wave Mixing Interferometer An Intelligent Supervision System of Environmental Pollution in Industrial Park Iterative learning control with optimal learning gain for recharging of Lithium-ion battery Integrated Position and Speed Control for PMSM Servo System Based on Extended State Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1