基于颗粒计算的定性数据聚类模型研究

Haiyan Li, Shen Yang, Hong Liu
{"title":"基于颗粒计算的定性数据聚类模型研究","authors":"Haiyan Li,&nbsp;Shen Yang,&nbsp;Hong Liu","doi":"10.1016/j.aasri.2013.10.048","DOIUrl":null,"url":null,"abstract":"<div><p>Granular computing theories in the field of computer are introduced into the statistical analysis of qualitative data, based on the traditional qualitative data analysis methods. Multidimensional qualitative data by use of information system are described, and the mathematical model of qualitative data cluster model based on granular computing is given. The feasibility and the superiority are verified by treating massive data. This method may provide a new train of thought for analysis of large and complex qualitative data.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"4 ","pages":"Pages 329-333"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.048","citationCount":"3","resultStr":"{\"title\":\"Study of Qualitative Data Cluster Model based on Granular Computing\",\"authors\":\"Haiyan Li,&nbsp;Shen Yang,&nbsp;Hong Liu\",\"doi\":\"10.1016/j.aasri.2013.10.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Granular computing theories in the field of computer are introduced into the statistical analysis of qualitative data, based on the traditional qualitative data analysis methods. Multidimensional qualitative data by use of information system are described, and the mathematical model of qualitative data cluster model based on granular computing is given. The feasibility and the superiority are verified by treating massive data. This method may provide a new train of thought for analysis of large and complex qualitative data.</p></div>\",\"PeriodicalId\":100008,\"journal\":{\"name\":\"AASRI Procedia\",\"volume\":\"4 \",\"pages\":\"Pages 329-333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.048\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AASRI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212671613000498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671613000498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在传统定性数据分析方法的基础上,将计算机领域的颗粒计算理论引入到定性数据的统计分析中。利用信息系统描述了多维定性数据,给出了基于粒度计算的定性数据聚类模型的数学模型。通过对海量数据的处理,验证了该方法的可行性和优越性。该方法可为海量复杂定性数据的分析提供一种新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Qualitative Data Cluster Model based on Granular Computing

Granular computing theories in the field of computer are introduced into the statistical analysis of qualitative data, based on the traditional qualitative data analysis methods. Multidimensional qualitative data by use of information system are described, and the mathematical model of qualitative data cluster model based on granular computing is given. The feasibility and the superiority are verified by treating massive data. This method may provide a new train of thought for analysis of large and complex qualitative data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1