一种多模态神经嵌入方法检测手机仿冒应用

Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake, Suranga Seneviratne, Guillaume Jourjon
{"title":"一种多模态神经嵌入方法检测手机仿冒应用","authors":"Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake, Suranga Seneviratne, Guillaume Jourjon","doi":"10.1145/3308558.3313427","DOIUrl":null,"url":null,"abstract":"Counterfeit apps impersonate existing popular apps in attempts to misguide users. Many counterfeits can be identified once installed, however even a tech-savvy user may struggle to detect them before installation. In this paper, we propose a novel approach of combining content embeddings and style embeddings generated from pre-trained convolutional neural networks to detect counterfeit apps. We present an analysis of approximately 1.2 million apps from Google Play Store and identify a set of potential counterfeits for top-10,000 apps. Under conservative assumptions, we were able to find 2,040 potential counterfeits that contain malware in a set of 49,608 apps that showed high similarity to one of the top-10,000 popular apps in Google Play Store. We also find 1,565 potential counterfeits asking for at least five additional dangerous permissions than the original app and 1,407 potential counterfeits having at least five extra third party advertisement libraries.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Multi-modal Neural Embeddings Approach for Detecting Mobile Counterfeit Apps\",\"authors\":\"Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake, Suranga Seneviratne, Guillaume Jourjon\",\"doi\":\"10.1145/3308558.3313427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counterfeit apps impersonate existing popular apps in attempts to misguide users. Many counterfeits can be identified once installed, however even a tech-savvy user may struggle to detect them before installation. In this paper, we propose a novel approach of combining content embeddings and style embeddings generated from pre-trained convolutional neural networks to detect counterfeit apps. We present an analysis of approximately 1.2 million apps from Google Play Store and identify a set of potential counterfeits for top-10,000 apps. Under conservative assumptions, we were able to find 2,040 potential counterfeits that contain malware in a set of 49,608 apps that showed high similarity to one of the top-10,000 popular apps in Google Play Store. We also find 1,565 potential counterfeits asking for at least five additional dangerous permissions than the original app and 1,407 potential counterfeits having at least five extra third party advertisement libraries.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

假冒应用模仿现有的流行应用,试图误导用户。许多假冒产品一旦安装就可以识别,然而,即使是精通技术的用户也可能很难在安装之前发现它们。在本文中,我们提出了一种将预训练卷积神经网络生成的内容嵌入和样式嵌入相结合的新方法来检测假冒应用程序。我们分析了来自Google Play Store的大约120万款应用,并在排名前1万的应用中找出了一系列潜在的仿冒产品。在保守的假设下,我们能够在49,608个应用中发现2,040个包含恶意软件的潜在假冒产品,这些应用与Google Play Store中排名前10,000的热门应用之一高度相似。我们还发现,1565款潜在仿冒应用要求至少5个比原始应用额外的危险权限,1407款潜在仿冒应用要求至少5个额外的第三方广告库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-modal Neural Embeddings Approach for Detecting Mobile Counterfeit Apps
Counterfeit apps impersonate existing popular apps in attempts to misguide users. Many counterfeits can be identified once installed, however even a tech-savvy user may struggle to detect them before installation. In this paper, we propose a novel approach of combining content embeddings and style embeddings generated from pre-trained convolutional neural networks to detect counterfeit apps. We present an analysis of approximately 1.2 million apps from Google Play Store and identify a set of potential counterfeits for top-10,000 apps. Under conservative assumptions, we were able to find 2,040 potential counterfeits that contain malware in a set of 49,608 apps that showed high similarity to one of the top-10,000 popular apps in Google Play Store. We also find 1,565 potential counterfeits asking for at least five additional dangerous permissions than the original app and 1,407 potential counterfeits having at least five extra third party advertisement libraries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1