钙调素拮抗剂W-7对豚鼠精子顶体反应的诱导作用

T. Nagae, P. N. Srivastava
{"title":"钙调素拮抗剂W-7对豚鼠精子顶体反应的诱导作用","authors":"T. Nagae, P. N. Srivastava","doi":"10.1002/MRD.1120140303","DOIUrl":null,"url":null,"abstract":"The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.","PeriodicalId":12668,"journal":{"name":"Gamete Research","volume":"20 1","pages":"197-208"},"PeriodicalIF":0.0000,"publicationDate":"1986-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Induction of the acrosome reaction in guinea pig spermatozoa by calmodulin antagonist W-7\",\"authors\":\"T. Nagae, P. N. Srivastava\",\"doi\":\"10.1002/MRD.1120140303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.\",\"PeriodicalId\":12668,\"journal\":{\"name\":\"Gamete Research\",\"volume\":\"20 1\",\"pages\":\"197-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gamete Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/MRD.1120140303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gamete Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/MRD.1120140303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了钙调素拮抗剂W-7对豚鼠精子获能和顶体反应的影响。W-7诱导顶体反应的主要特征是依赖于培养基的组成和pH以及碳酸氢钠的存在。W-7诱导顶体反应的最有效浓度约为5 μM,远小于钙调素的Kd。此外,W-7增强了精子在无Ca2+培养基中获得获能的能力。经W-7诱导发生顶体反应的精子能够穿透无带的仓鼠卵。W-5对钙调素的亲和力低于W-7,但其诱导顶体反应的方式与W-7相同。这些结果表明,萘磺酰胺衍生物W-7和W-5可以通过ph依赖性、Ca2+-钙调素依赖性的能化方式诱导豚鼠精子顶体反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Induction of the acrosome reaction in guinea pig spermatozoa by calmodulin antagonist W-7
The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic engineering of animals: An agricultural perspective, edited by J. Warren Evans and Alexander Hollaender; Plenum Press, New York, 1986, 328 pp. $49.50 Immunological evidence that a 305‐kilodalton vitelline envelope polypeptide isolated from sea urchin eggs is a sperm receptor Developmental capacity of mouse oocytes following maintenance of meiotic arrest in vitro Phosphoproteins are structural components of bull sperm outer dense fiber Effect of triton X‐100 on ultrastructure, reactivation, and motility characteristics of ram spermatozoa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1