Penerapan卷积神经网络(CNN)和欧几里得距离矩阵(EDM) untuk Mengurangi假阳性帕达Pengenalan Aktifitas手指点呼叫

Rila Mandala, M. Safari
{"title":"Penerapan卷积神经网络(CNN)和欧几里得距离矩阵(EDM) untuk Mengurangi假阳性帕达Pengenalan Aktifitas手指点呼叫","authors":"Rila Mandala, M. Safari","doi":"10.26418/jp.v9i1.61716","DOIUrl":null,"url":null,"abstract":"Aktifitas finger point call (FPC) yang mengharuskan operator menunjuk (finger point) dan mengucapkan (call) sebelum menjalankan suatu proses, merupakan aktifitas yang umum diterapkan di industri manufaktur khususnya pada perusahaan Jepang. FPC terbukti efektif mengurangi human error, tetapi operator sering tidak konsisten dalam menerapkan FPC sehingga perlu sistem untuk mendeteksi aktifitas FPC sudah dilakukan dengan baik dan benar. Salah satu metode pengenalan aktifitas (activity recognition) yaitu menggunakan convolutional neural networks (CNN) untuk mengklasifikasikan aktifitas manusia. Namun, aktifitas FPC dinyatakan valid atau invalid setelah memastikan operator menunjuk dengan benar ke arah objek dan menunjuk ke arah referensi, sehingga harus dilakukan analisis pada beberapa frame video. Apabila hanya menggunakan CNN saja, akan menyebabkan tingkat false positive menjadi tinggi, karena CNN akan langsung melakukan analisis pada 1 frame video. Tujuan penelitian ini yaitu mengurangi false positive ketika mendeteksi aktifitas FPC dengan cara melakukan anlaisis lebih lanjut pada hasil deteksi menggunakan euclidean distance matrices (EDM). Hasil penelitian menunjukkan pada percobaan yang diperagakan oleh 1 orang: false positive berkurang hingga 100%, nilai Precision sebesar 1, dan nilai recall sebesar 0,96. Hasil ketika diperagakan oleh 10 orang: nilai Precision sebesar 0,9, dan nilai recall sebesar 0,9. lebih baik dibandingkan YOLOv7 versi original yang nilai Precisionnya hanya sebesar 0,5.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penerapan Convolutional Neural Network (CNN) dan Euclidean Distance Matrices (EDM) untuk Mengurangi False Positive pada Pengenalan Aktifitas Finger Point Call\",\"authors\":\"Rila Mandala, M. Safari\",\"doi\":\"10.26418/jp.v9i1.61716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aktifitas finger point call (FPC) yang mengharuskan operator menunjuk (finger point) dan mengucapkan (call) sebelum menjalankan suatu proses, merupakan aktifitas yang umum diterapkan di industri manufaktur khususnya pada perusahaan Jepang. FPC terbukti efektif mengurangi human error, tetapi operator sering tidak konsisten dalam menerapkan FPC sehingga perlu sistem untuk mendeteksi aktifitas FPC sudah dilakukan dengan baik dan benar. Salah satu metode pengenalan aktifitas (activity recognition) yaitu menggunakan convolutional neural networks (CNN) untuk mengklasifikasikan aktifitas manusia. Namun, aktifitas FPC dinyatakan valid atau invalid setelah memastikan operator menunjuk dengan benar ke arah objek dan menunjuk ke arah referensi, sehingga harus dilakukan analisis pada beberapa frame video. Apabila hanya menggunakan CNN saja, akan menyebabkan tingkat false positive menjadi tinggi, karena CNN akan langsung melakukan analisis pada 1 frame video. Tujuan penelitian ini yaitu mengurangi false positive ketika mendeteksi aktifitas FPC dengan cara melakukan anlaisis lebih lanjut pada hasil deteksi menggunakan euclidean distance matrices (EDM). Hasil penelitian menunjukkan pada percobaan yang diperagakan oleh 1 orang: false positive berkurang hingga 100%, nilai Precision sebesar 1, dan nilai recall sebesar 0,96. Hasil ketika diperagakan oleh 10 orang: nilai Precision sebesar 0,9, dan nilai recall sebesar 0,9. lebih baik dibandingkan YOLOv7 versi original yang nilai Precisionnya hanya sebesar 0,5.\",\"PeriodicalId\":31793,\"journal\":{\"name\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/jp.v9i1.61716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v9i1.61716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

指客行动(FPC)要求操作员在操作过程前任命(指节)和发音(电话),这在日本制造业尤其适用。FPC被证明可以有效地减少人为错误,但操作人员在应用FPC时往往不一致,因此需要系统来检测FPC的活动已经做好并正确的工作。活动识别的一种方法是利用神经网络对人类活动进行分类。然而,FPC的活动在确定操作符正确指向物体并指向参考点后被宣布为有效或无效,因此必须在多个视频框架上进行分析。仅仅使用CNN,它就会导致假阳性水平升高,因为CNN会立即对一个视频帧进行分析。本研究的目的是通过使用欧里得距离母系(EDM)进一步对检测结果进行权衡检测时,减少FPC活动的测错性。研究结果显示,在一个人的实验中:假阳性下降到100%,Precision值降低到1,召回值降低到0.96。由10人演示的结果:Precision值为0.9,recall值为0.9。比原始版本的YOLOv7好多了,确切的值只有0.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penerapan Convolutional Neural Network (CNN) dan Euclidean Distance Matrices (EDM) untuk Mengurangi False Positive pada Pengenalan Aktifitas Finger Point Call
Aktifitas finger point call (FPC) yang mengharuskan operator menunjuk (finger point) dan mengucapkan (call) sebelum menjalankan suatu proses, merupakan aktifitas yang umum diterapkan di industri manufaktur khususnya pada perusahaan Jepang. FPC terbukti efektif mengurangi human error, tetapi operator sering tidak konsisten dalam menerapkan FPC sehingga perlu sistem untuk mendeteksi aktifitas FPC sudah dilakukan dengan baik dan benar. Salah satu metode pengenalan aktifitas (activity recognition) yaitu menggunakan convolutional neural networks (CNN) untuk mengklasifikasikan aktifitas manusia. Namun, aktifitas FPC dinyatakan valid atau invalid setelah memastikan operator menunjuk dengan benar ke arah objek dan menunjuk ke arah referensi, sehingga harus dilakukan analisis pada beberapa frame video. Apabila hanya menggunakan CNN saja, akan menyebabkan tingkat false positive menjadi tinggi, karena CNN akan langsung melakukan analisis pada 1 frame video. Tujuan penelitian ini yaitu mengurangi false positive ketika mendeteksi aktifitas FPC dengan cara melakukan anlaisis lebih lanjut pada hasil deteksi menggunakan euclidean distance matrices (EDM). Hasil penelitian menunjukkan pada percobaan yang diperagakan oleh 1 orang: false positive berkurang hingga 100%, nilai Precision sebesar 1, dan nilai recall sebesar 0,96. Hasil ketika diperagakan oleh 10 orang: nilai Precision sebesar 0,9, dan nilai recall sebesar 0,9. lebih baik dibandingkan YOLOv7 versi original yang nilai Precisionnya hanya sebesar 0,5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
期刊最新文献
Optimasi Hyperparameter pada Neural Network (Studi Kasus: Identifikasi Komentar Cyberbullying Instagram) Algoritma Penanganan Constraint pada Persoalan Penjadwalan Perkuliahan Universitas di Lingkungan Pendidikan Tinggi Keagamaan Islam (PTKI) Sistem Penilaian Jawaban Singkat Otomatis pada Ujian Online Berbasis Komputer Menggunakan Algoritma Cosine Similarity Penerapan Seleksi Fitur Particle Swarm Optimization pada Klasifikasi Teks (Studi Kasus: Komentar Cyberbullying Instagram) Sistem Rekomendasi Topik Skripsi Program Studi Informatika
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1