Somita Dhal, Sneha Singh, Koustav Konar, R. K. Paul
{"title":"利用 COBE/FIRAS 数据集计算宇宙微波背景辐射参数","authors":"Somita Dhal, Sneha Singh, Koustav Konar, R. K. Paul","doi":"10.1007/s10686-023-09904-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10<sup>–5</sup> with an upper bound |µ| < 5.7 × 10<sup>–5 </sup>(95% confidence level). The amplitude of the CMB dipole is found to be, T<sub>amp</sub> = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ < 1.2 × 10<sup>–4</sup> (95% confidence level). The upper limit of y- distortion is calculated as y < 1.0 × 10<sup>–4</sup> (95% confidence level).</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"715 - 726"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset\",\"authors\":\"Somita Dhal, Sneha Singh, Koustav Konar, R. K. Paul\",\"doi\":\"10.1007/s10686-023-09904-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10<sup>–5</sup> with an upper bound |µ| < 5.7 × 10<sup>–5 </sup>(95% confidence level). The amplitude of the CMB dipole is found to be, T<sub>amp</sub> = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ < 1.2 × 10<sup>–4</sup> (95% confidence level). The upper limit of y- distortion is calculated as y < 1.0 × 10<sup>–4</sup> (95% confidence level).</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"56 2-3\",\"pages\":\"715 - 726\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-023-09904-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09904-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset
In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10–5 with an upper bound |µ| < 5.7 × 10–5 (95% confidence level). The amplitude of the CMB dipole is found to be, Tamp = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ < 1.2 × 10–4 (95% confidence level). The upper limit of y- distortion is calculated as y < 1.0 × 10–4 (95% confidence level).
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.