对SiO2和多晶硅具有高选择性的氮化硅原子层刻蚀

Nobuya Miyoshi, Kazunori Shinoda, Hiroyuki Kobayashi, M. Kurihara, Yutaka Kouzuma, M. Izawa
{"title":"对SiO2和多晶硅具有高选择性的氮化硅原子层刻蚀","authors":"Nobuya Miyoshi, Kazunori Shinoda, Hiroyuki Kobayashi, M. Kurihara, Yutaka Kouzuma, M. Izawa","doi":"10.1116/6.0001179","DOIUrl":null,"url":null,"abstract":"Atomic layer etching (ALE) is usually classified into ion-driven anisotropic etching or thermally driven isotropic etching. In this work, we present a thermal ALE process for Si3N4 with high selectivity to SiO2 and poly-Si. This ALE process consists of exposure to a CH2F2/O2/Ar downstream plasma to form an (NH4)2SiF6-based surface-modified layer, followed by infrared (IR) annealing to remove the modified layer. CH2F2-based chemistry was adopted to achieve high selectivity to SiO2 and poly-Si. This chemistry was expected to reduce the number density of F atoms (radicals), which contributes to decreasing the etching rate of SiO2 and poly-Si films. X-ray photoelectron spectroscopy analysis confirmed the formation of an (NH4)2SiF6-based modified layer on the surface of the Si3N4 after exposure to the plasma and subsequent removal of the modified layer using IR annealing. An in situ ellipsometry measurement revealed that the etch per cycle of the ALE process saturated with respect to the radical exposure time at 0.9 nm/cycle, demonstrating the self-limiting nature of this etching process. In addition, no etching was observed on SiO2 and poly-Si films, successfully demonstrating the high selectivity of this ALE process. This high selectivity to SiO2 and poly-Si is attributed to the fact that the spontaneous etching rates of these films are negligibly small and that there is no surface reaction to etch these films during the IR annealing step.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"50 1","pages":"052601"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Atomic layer etching of Si3N4 with high selectivity to SiO2 and poly-Si\",\"authors\":\"Nobuya Miyoshi, Kazunori Shinoda, Hiroyuki Kobayashi, M. Kurihara, Yutaka Kouzuma, M. Izawa\",\"doi\":\"10.1116/6.0001179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic layer etching (ALE) is usually classified into ion-driven anisotropic etching or thermally driven isotropic etching. In this work, we present a thermal ALE process for Si3N4 with high selectivity to SiO2 and poly-Si. This ALE process consists of exposure to a CH2F2/O2/Ar downstream plasma to form an (NH4)2SiF6-based surface-modified layer, followed by infrared (IR) annealing to remove the modified layer. CH2F2-based chemistry was adopted to achieve high selectivity to SiO2 and poly-Si. This chemistry was expected to reduce the number density of F atoms (radicals), which contributes to decreasing the etching rate of SiO2 and poly-Si films. X-ray photoelectron spectroscopy analysis confirmed the formation of an (NH4)2SiF6-based modified layer on the surface of the Si3N4 after exposure to the plasma and subsequent removal of the modified layer using IR annealing. An in situ ellipsometry measurement revealed that the etch per cycle of the ALE process saturated with respect to the radical exposure time at 0.9 nm/cycle, demonstrating the self-limiting nature of this etching process. In addition, no etching was observed on SiO2 and poly-Si films, successfully demonstrating the high selectivity of this ALE process. This high selectivity to SiO2 and poly-Si is attributed to the fact that the spontaneous etching rates of these films are negligibly small and that there is no surface reaction to etch these films during the IR annealing step.\",\"PeriodicalId\":17571,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology\",\"volume\":\"50 1\",\"pages\":\"052601\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

原子层刻蚀通常分为离子驱动的各向异性刻蚀和热驱动的各向同性刻蚀。在这项工作中,我们提出了一种对SiO2和多晶硅具有高选择性的Si3N4的热ALE工艺。该ALE工艺包括暴露于CH2F2/O2/Ar下游等离子体中形成(NH4) 2sif6基表面修饰层,然后通过红外退火去除修饰层。采用ch2f2为基础的化学方法实现了对SiO2和多晶硅的高选择性。预计这种化学反应会降低F原子(自由基)的数量密度,从而有助于降低SiO2和多晶硅薄膜的蚀刻速率。x射线光电子能谱分析证实,等离子体暴露后,Si3N4表面形成了基于(NH4) 2sif6的修饰层,随后用IR退火去除修饰层。原位椭偏测量表明,相对于0.9 nm/周期的自由基曝光时间,ALE工艺的每周期蚀刻饱和,证明了该蚀刻工艺的自限性。此外,在SiO2和多晶硅薄膜上没有观察到蚀刻,成功地证明了该ALE工艺的高选择性。这种对SiO2和多晶硅的高选择性是由于这些薄膜的自发蚀刻速率可以忽略不计,并且在红外退火步骤中没有表面反应来蚀刻这些薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic layer etching of Si3N4 with high selectivity to SiO2 and poly-Si
Atomic layer etching (ALE) is usually classified into ion-driven anisotropic etching or thermally driven isotropic etching. In this work, we present a thermal ALE process for Si3N4 with high selectivity to SiO2 and poly-Si. This ALE process consists of exposure to a CH2F2/O2/Ar downstream plasma to form an (NH4)2SiF6-based surface-modified layer, followed by infrared (IR) annealing to remove the modified layer. CH2F2-based chemistry was adopted to achieve high selectivity to SiO2 and poly-Si. This chemistry was expected to reduce the number density of F atoms (radicals), which contributes to decreasing the etching rate of SiO2 and poly-Si films. X-ray photoelectron spectroscopy analysis confirmed the formation of an (NH4)2SiF6-based modified layer on the surface of the Si3N4 after exposure to the plasma and subsequent removal of the modified layer using IR annealing. An in situ ellipsometry measurement revealed that the etch per cycle of the ALE process saturated with respect to the radical exposure time at 0.9 nm/cycle, demonstrating the self-limiting nature of this etching process. In addition, no etching was observed on SiO2 and poly-Si films, successfully demonstrating the high selectivity of this ALE process. This high selectivity to SiO2 and poly-Si is attributed to the fact that the spontaneous etching rates of these films are negligibly small and that there is no surface reaction to etch these films during the IR annealing step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interfacial reactivity in the Co/CuO samples as investigated by x-ray photoelectron spectroscopy Modification of discharge sequences to control the random dispersion of flake particles during wafer etching Effect of atomic-scale microstructures on TiZrV non-evaporable getter film activation E-mode AlGaN/GaN HEMTs using p-NiO gates Review on remote phonon scattering in transistors with metal-oxide-semiconductor structures adopting high-k gate dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1