Michael Hayes, M. Jenkins, J. Woodruff, D. Moser, C. Dezelah, J. F. ConleyJr.
{"title":"沉积后退火工艺改善了钌原子层的性能","authors":"Michael Hayes, M. Jenkins, J. Woodruff, D. Moser, C. Dezelah, J. F. ConleyJr.","doi":"10.1116/6.0001078","DOIUrl":null,"url":null,"abstract":"The resistivity, morphology, and effective work function of thin film ruthenium deposited by thermal atomic layer deposition (ALD) using η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO)3] and O2 are investigated before and after annealing at temperatures up to 500 °C. Annealing at 500 °C in either N2 or H2/N2 reduces the average resistivity of as-deposited 30 nm thick Ru films from 16.2 to as low as 13.7 or 9.1 μΩ cm, respectively, approaching the bulk value of Ru. X-ray diffraction shows that as-deposited films are polycrystalline hexagonal Ru. Annealing at 500 °C in either N2 or H2/N2 results in crystallite growth accompanied by a roughening of the surface from approximately 0.7 to 2.2 nm RMS, as shown by atomic force microscopy. Secondary ion mass spectroscopy shows low residual carbon and oxygen in as-deposited films. Annealing in N2 at 500 °C reduces only the carbon content, whereas annealing in H2/N2 at 500 °C results in a further reduction of carbon combined with reduction in oxygen as well. Using series of metal/oxide/silicon capacitors with varying oxide thickness, the effective work function of 500 °C H2/N2 annealed Ru films on ALD Al2O3 and HfO2 was determined to be approximately 4.9 and 5.3 eV, respectively. Using internal photoemission spectroscopy, the Ru/Al2O3 and Ru/HfO2 electron energy barrier heights were determined to be 3.4 ± 0.1 and 3.8 ± 0.1 eV, respectively.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"59 1","pages":"052402"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improved properties of atomic layer deposited ruthenium via postdeposition annealing\",\"authors\":\"Michael Hayes, M. Jenkins, J. Woodruff, D. Moser, C. Dezelah, J. F. ConleyJr.\",\"doi\":\"10.1116/6.0001078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The resistivity, morphology, and effective work function of thin film ruthenium deposited by thermal atomic layer deposition (ALD) using η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO)3] and O2 are investigated before and after annealing at temperatures up to 500 °C. Annealing at 500 °C in either N2 or H2/N2 reduces the average resistivity of as-deposited 30 nm thick Ru films from 16.2 to as low as 13.7 or 9.1 μΩ cm, respectively, approaching the bulk value of Ru. X-ray diffraction shows that as-deposited films are polycrystalline hexagonal Ru. Annealing at 500 °C in either N2 or H2/N2 results in crystallite growth accompanied by a roughening of the surface from approximately 0.7 to 2.2 nm RMS, as shown by atomic force microscopy. Secondary ion mass spectroscopy shows low residual carbon and oxygen in as-deposited films. Annealing in N2 at 500 °C reduces only the carbon content, whereas annealing in H2/N2 at 500 °C results in a further reduction of carbon combined with reduction in oxygen as well. Using series of metal/oxide/silicon capacitors with varying oxide thickness, the effective work function of 500 °C H2/N2 annealed Ru films on ALD Al2O3 and HfO2 was determined to be approximately 4.9 and 5.3 eV, respectively. Using internal photoemission spectroscopy, the Ru/Al2O3 and Ru/HfO2 electron energy barrier heights were determined to be 3.4 ± 0.1 and 3.8 ± 0.1 eV, respectively.\",\"PeriodicalId\":17571,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology\",\"volume\":\"59 1\",\"pages\":\"052402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved properties of atomic layer deposited ruthenium via postdeposition annealing
The resistivity, morphology, and effective work function of thin film ruthenium deposited by thermal atomic layer deposition (ALD) using η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO)3] and O2 are investigated before and after annealing at temperatures up to 500 °C. Annealing at 500 °C in either N2 or H2/N2 reduces the average resistivity of as-deposited 30 nm thick Ru films from 16.2 to as low as 13.7 or 9.1 μΩ cm, respectively, approaching the bulk value of Ru. X-ray diffraction shows that as-deposited films are polycrystalline hexagonal Ru. Annealing at 500 °C in either N2 or H2/N2 results in crystallite growth accompanied by a roughening of the surface from approximately 0.7 to 2.2 nm RMS, as shown by atomic force microscopy. Secondary ion mass spectroscopy shows low residual carbon and oxygen in as-deposited films. Annealing in N2 at 500 °C reduces only the carbon content, whereas annealing in H2/N2 at 500 °C results in a further reduction of carbon combined with reduction in oxygen as well. Using series of metal/oxide/silicon capacitors with varying oxide thickness, the effective work function of 500 °C H2/N2 annealed Ru films on ALD Al2O3 and HfO2 was determined to be approximately 4.9 and 5.3 eV, respectively. Using internal photoemission spectroscopy, the Ru/Al2O3 and Ru/HfO2 electron energy barrier heights were determined to be 3.4 ± 0.1 and 3.8 ± 0.1 eV, respectively.