快速:风格转移的几个镜头抽象总结

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00045
Omar Alsayed, Chloe Muncy, Ahmed Youssef, Ryan Green
{"title":"快速:风格转移的几个镜头抽象总结","authors":"Omar Alsayed, Chloe Muncy, Ahmed Youssef, Ryan Green","doi":"10.1109/ICNLP58431.2023.00045","DOIUrl":null,"url":null,"abstract":"Unsupervised text style transfer methods aim to transfer the style of the text without affecting its fundamental meaning using non-parallel data. Although previous work has explored few-shot learning for this task, incorporating few-shot abstractive summarization and its benefits have not yet been explored. Hence, we propose a novel unsupervised text style transfer approach using few-shot abstractive summarization. In our method, we infer a vector space embedding for the corpora and align the source-target embeddings using their vector space centroids. A set of nearest neighbors is retrieved for every source text unit from the target style based on their semantic similarity in the aligned vector space. Multiple subsets of nearest neighbors are extracted and summarized using a language model with a reranking procedure to optimize the style transfer quality, which achieves state-of-the-art results on automatic evaluation metrics.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"22 1","pages":"213-219"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FASST: Few-Shot Abstractive Summarization for Style Transfer\",\"authors\":\"Omar Alsayed, Chloe Muncy, Ahmed Youssef, Ryan Green\",\"doi\":\"10.1109/ICNLP58431.2023.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised text style transfer methods aim to transfer the style of the text without affecting its fundamental meaning using non-parallel data. Although previous work has explored few-shot learning for this task, incorporating few-shot abstractive summarization and its benefits have not yet been explored. Hence, we propose a novel unsupervised text style transfer approach using few-shot abstractive summarization. In our method, we infer a vector space embedding for the corpora and align the source-target embeddings using their vector space centroids. A set of nearest neighbors is retrieved for every source text unit from the target style based on their semantic similarity in the aligned vector space. Multiple subsets of nearest neighbors are extracted and summarized using a language model with a reranking procedure to optimize the style transfer quality, which achieves state-of-the-art results on automatic evaluation metrics.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"22 1\",\"pages\":\"213-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

无监督文本样式转移方法旨在利用非并行数据在不影响文本基本含义的情况下转移文本样式。虽然以前的工作已经探索了针对该任务的少镜头学习,但结合少镜头抽象总结及其好处尚未得到探索。因此,我们提出了一种新颖的无监督文本风格转移方法,该方法使用少量抽象摘要。在我们的方法中,我们推断语料库的向量空间嵌入,并使用它们的向量空间质心对齐源-目标嵌入。基于对齐向量空间中的语义相似性,从目标样式中为每个源文本单元检索一组最近邻。利用语言模型对多近邻子集进行提取和汇总,优化风格传递质量,在自动评价指标上取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FASST: Few-Shot Abstractive Summarization for Style Transfer
Unsupervised text style transfer methods aim to transfer the style of the text without affecting its fundamental meaning using non-parallel data. Although previous work has explored few-shot learning for this task, incorporating few-shot abstractive summarization and its benefits have not yet been explored. Hence, we propose a novel unsupervised text style transfer approach using few-shot abstractive summarization. In our method, we infer a vector space embedding for the corpora and align the source-target embeddings using their vector space centroids. A set of nearest neighbors is retrieved for every source text unit from the target style based on their semantic similarity in the aligned vector space. Multiple subsets of nearest neighbors are extracted and summarized using a language model with a reranking procedure to optimize the style transfer quality, which achieves state-of-the-art results on automatic evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1