风力发电机用烧结与复合刹车片的对比研究

M. A. Sai Balaji, J. Katiyar, A. Eakambaram, P. Baskara Sethupathi, J. Kamalakannan, A. Baskar
{"title":"风力发电机用烧结与复合刹车片的对比研究","authors":"M. A. Sai Balaji, J. Katiyar, A. Eakambaram, P. Baskara Sethupathi, J. Kamalakannan, A. Baskar","doi":"10.1177/13506501231159188","DOIUrl":null,"url":null,"abstract":"The sintered brake pads have been the most commonly utilized brake pads in wind turbines, as it stalls the rotor after shutdown or in case of emergencies. It is a mixture of metallic particles that are pressed together. But it has been noticed that the friction at interface generates the spark in adverse conditions, which cause a fire in nacelle. Due to this a compact unit for fire suppression is used, which adds the additional cost in brake system. Therefore, it is necessary to address the spark issues coming from brake pads under adverse conditions through developing a brake pad using alternate route. Hence, a composite brake button was developed through a compression moulding route, that is, cost economic route. Despite the different compositions and manufacturing routes of materials, a similar frictional behaviour is observed after testing using friction test rig. Further, it is observed a marginally higher friction values for sintered pads. Moreover, the physical and mechanical properties like density, hardness, porosity, shear strength, compression strength, etc., are also found to be similar. In fact, the density of a composite pad is observed 34.7% lesser than sintered pad. Both the developed brake pads have a mean dynamic friction coefficient (∼0.4–0.5) with a mean static friction coefficient of approximately 0.45. In spite of more hardness, the wear resistance is found poorer in sintered pads as compared with composite pads. Hence, it can be concluded that the developed composite pad shows better tribomechanical performance and suitable for application without spark issues.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"19 1","pages":"1430 - 1445"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative study of sintered and composite brake pad for wind turbine applications\",\"authors\":\"M. A. Sai Balaji, J. Katiyar, A. Eakambaram, P. Baskara Sethupathi, J. Kamalakannan, A. Baskar\",\"doi\":\"10.1177/13506501231159188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sintered brake pads have been the most commonly utilized brake pads in wind turbines, as it stalls the rotor after shutdown or in case of emergencies. It is a mixture of metallic particles that are pressed together. But it has been noticed that the friction at interface generates the spark in adverse conditions, which cause a fire in nacelle. Due to this a compact unit for fire suppression is used, which adds the additional cost in brake system. Therefore, it is necessary to address the spark issues coming from brake pads under adverse conditions through developing a brake pad using alternate route. Hence, a composite brake button was developed through a compression moulding route, that is, cost economic route. Despite the different compositions and manufacturing routes of materials, a similar frictional behaviour is observed after testing using friction test rig. Further, it is observed a marginally higher friction values for sintered pads. Moreover, the physical and mechanical properties like density, hardness, porosity, shear strength, compression strength, etc., are also found to be similar. In fact, the density of a composite pad is observed 34.7% lesser than sintered pad. Both the developed brake pads have a mean dynamic friction coefficient (∼0.4–0.5) with a mean static friction coefficient of approximately 0.45. In spite of more hardness, the wear resistance is found poorer in sintered pads as compared with composite pads. Hence, it can be concluded that the developed composite pad shows better tribomechanical performance and suitable for application without spark issues.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"19 1\",\"pages\":\"1430 - 1445\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231159188\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231159188","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

烧结刹车片是风力涡轮机中最常用的刹车片,因为它在停机后或在紧急情况下使转子失速。它是一种金属微粒被压在一起的混合物。但人们注意到,在不利条件下,接触面摩擦会产生火花,从而引起机舱着火。由于这是一个紧凑的单位用于灭火,这增加了额外的成本,在制动系统。因此,有必要通过开发使用备选路线的刹车片来解决不利条件下刹车片产生的火花问题。因此,通过压缩成型路线,即成本经济路线,开发了复合制动按钮。尽管材料的成分和制造路线不同,但在摩擦试验台测试后观察到相似的摩擦行为。此外,观察到烧结垫片的摩擦值略高。此外,密度、硬度、孔隙率、抗剪强度、抗压强度等物理力学性能也相似。事实上,复合衬垫的密度比烧结衬垫低34.7%。两种开发的刹车片具有平均动态摩擦系数(~ 0.4-0.5),平均静摩擦系数约为0.45。尽管硬度更高,但与复合衬垫相比,烧结衬垫的耐磨性较差。由此可见,所研制的复合衬垫具有较好的摩擦力学性能,适合无火花问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of sintered and composite brake pad for wind turbine applications
The sintered brake pads have been the most commonly utilized brake pads in wind turbines, as it stalls the rotor after shutdown or in case of emergencies. It is a mixture of metallic particles that are pressed together. But it has been noticed that the friction at interface generates the spark in adverse conditions, which cause a fire in nacelle. Due to this a compact unit for fire suppression is used, which adds the additional cost in brake system. Therefore, it is necessary to address the spark issues coming from brake pads under adverse conditions through developing a brake pad using alternate route. Hence, a composite brake button was developed through a compression moulding route, that is, cost economic route. Despite the different compositions and manufacturing routes of materials, a similar frictional behaviour is observed after testing using friction test rig. Further, it is observed a marginally higher friction values for sintered pads. Moreover, the physical and mechanical properties like density, hardness, porosity, shear strength, compression strength, etc., are also found to be similar. In fact, the density of a composite pad is observed 34.7% lesser than sintered pad. Both the developed brake pads have a mean dynamic friction coefficient (∼0.4–0.5) with a mean static friction coefficient of approximately 0.45. In spite of more hardness, the wear resistance is found poorer in sintered pads as compared with composite pads. Hence, it can be concluded that the developed composite pad shows better tribomechanical performance and suitable for application without spark issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant Effects of a typical shear dependent viscosity on analytical elastohydrodynamic lubrication film thickness predictions: A critical issue for the classical approach Research progress of surface texturing to improve the tribological properties: A review Study of the effect of laser textured rotors on the starting performance of metal–rubber mating pairs under different lubricating media environments Hybrid lubrication model study of slip ring combination seal under the influence of frictional heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1