{"title":"通过社会策展服务的话题层面兴趣和互动进行话题影响建模","authors":"Daehoon Kim, Jae-Gil Lee, B. Lee","doi":"10.1109/ICDE.2016.7498225","DOIUrl":null,"url":null,"abstract":"Social curation services are emerging social media platforms that enable users to curate their contents according to the topic and express their interests at the topic level by following curated collections of other users' contents rather than the users themselves. The topic-level information revealed through this new feature far exceeds what existing methods solicit from the traditional social networking services, to greatly enhance the quality of topic-sensitive influence modeling. In this paper, we propose a novel model called the topical influence with social curation (TISC) to find influential users from social curation services. This model, formulated by the continuous conditional random field, fully takes advantage of the explicitly available topic-level information reflected in both contents and interactions. In order to validate its merits, we comprehensively compare TISC with state-of-the-art models using two real-world data sets collected from Pinterest and Scoop.it. The results show that TISC achieves higher accuracy by up to around 80% and finds more convincing results in case studies than the other models. Moreover, we develop a distributed learning algorithm on Spark and demonstrate its excellent scalability on a cluster of 48 cores.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"17 1","pages":"13-24"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Topical influence modeling via topic-level interests and interactions on social curation services\",\"authors\":\"Daehoon Kim, Jae-Gil Lee, B. Lee\",\"doi\":\"10.1109/ICDE.2016.7498225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social curation services are emerging social media platforms that enable users to curate their contents according to the topic and express their interests at the topic level by following curated collections of other users' contents rather than the users themselves. The topic-level information revealed through this new feature far exceeds what existing methods solicit from the traditional social networking services, to greatly enhance the quality of topic-sensitive influence modeling. In this paper, we propose a novel model called the topical influence with social curation (TISC) to find influential users from social curation services. This model, formulated by the continuous conditional random field, fully takes advantage of the explicitly available topic-level information reflected in both contents and interactions. In order to validate its merits, we comprehensively compare TISC with state-of-the-art models using two real-world data sets collected from Pinterest and Scoop.it. The results show that TISC achieves higher accuracy by up to around 80% and finds more convincing results in case studies than the other models. Moreover, we develop a distributed learning algorithm on Spark and demonstrate its excellent scalability on a cluster of 48 cores.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"17 1\",\"pages\":\"13-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topical influence modeling via topic-level interests and interactions on social curation services
Social curation services are emerging social media platforms that enable users to curate their contents according to the topic and express their interests at the topic level by following curated collections of other users' contents rather than the users themselves. The topic-level information revealed through this new feature far exceeds what existing methods solicit from the traditional social networking services, to greatly enhance the quality of topic-sensitive influence modeling. In this paper, we propose a novel model called the topical influence with social curation (TISC) to find influential users from social curation services. This model, formulated by the continuous conditional random field, fully takes advantage of the explicitly available topic-level information reflected in both contents and interactions. In order to validate its merits, we comprehensively compare TISC with state-of-the-art models using two real-world data sets collected from Pinterest and Scoop.it. The results show that TISC achieves higher accuracy by up to around 80% and finds more convincing results in case studies than the other models. Moreover, we develop a distributed learning algorithm on Spark and demonstrate its excellent scalability on a cluster of 48 cores.