{"title":"微室阵列微细胞包封用海藻酸盐均匀胶囊的批量生产","authors":"H. Kitagawa, Wei-heong Tan, S. Takeuchi","doi":"10.1109/MEMSYS.2007.4433112","DOIUrl":null,"url":null,"abstract":"This work is motivated by the need for accurate positioning of both adherent and non-adherent cells into arrays that can be integrated with microfluidic channels in high-throughput screening (HTS) for drug discovery. We describe a microfluidic device that allows rapid production of uniform micro hydrogel capsules that can contain cells. Up to 1times104 hydrogel capsules can be simply formed and arrayed simultaneously using microchambers in a 10 mm long microchannel. In this work, alginate was used as the hydrogel capsules that can be dissolved and removed with EDTA; thus samples confined in the capsules are collectable after observation in the array. We demonstrated the microencapsulation of E. coli into alginate capsules, and dissolved the capsules with EDTA successfully.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"28 1","pages":"493-496"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mass production of uniform alginate capsules for micro cell encapslation using micro chamber array\",\"authors\":\"H. Kitagawa, Wei-heong Tan, S. Takeuchi\",\"doi\":\"10.1109/MEMSYS.2007.4433112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is motivated by the need for accurate positioning of both adherent and non-adherent cells into arrays that can be integrated with microfluidic channels in high-throughput screening (HTS) for drug discovery. We describe a microfluidic device that allows rapid production of uniform micro hydrogel capsules that can contain cells. Up to 1times104 hydrogel capsules can be simply formed and arrayed simultaneously using microchambers in a 10 mm long microchannel. In this work, alginate was used as the hydrogel capsules that can be dissolved and removed with EDTA; thus samples confined in the capsules are collectable after observation in the array. We demonstrated the microencapsulation of E. coli into alginate capsules, and dissolved the capsules with EDTA successfully.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"28 1\",\"pages\":\"493-496\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mass production of uniform alginate capsules for micro cell encapslation using micro chamber array
This work is motivated by the need for accurate positioning of both adherent and non-adherent cells into arrays that can be integrated with microfluidic channels in high-throughput screening (HTS) for drug discovery. We describe a microfluidic device that allows rapid production of uniform micro hydrogel capsules that can contain cells. Up to 1times104 hydrogel capsules can be simply formed and arrayed simultaneously using microchambers in a 10 mm long microchannel. In this work, alginate was used as the hydrogel capsules that can be dissolved and removed with EDTA; thus samples confined in the capsules are collectable after observation in the array. We demonstrated the microencapsulation of E. coli into alginate capsules, and dissolved the capsules with EDTA successfully.