采用压舱水运动减缓技术的轻型浮式海上风力发电机优化设计

IF 1.3 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Wind and Structures Pub Date : 2022-08-09 DOI:10.3390/wind2030029
W. Ramsay, A. Goupee, C. Allen, A. Viselli, R. Kimball
{"title":"采用压舱水运动减缓技术的轻型浮式海上风力发电机优化设计","authors":"W. Ramsay, A. Goupee, C. Allen, A. Viselli, R. Kimball","doi":"10.3390/wind2030029","DOIUrl":null,"url":null,"abstract":"Floating offshore wind turbines are a promising technology for addressing energy needs by utilizing wind resources offshore. The current state of the art is based on heavy, expensive platforms to survive the ocean environment. Typical design techniques do not involve optimization because of the computationally expensive time domain solvers used to model motions and loads in the ocean environment. However, this design uses an efficient frequency domain solver with a genetic algorithm to rapidly optimize the design of a novel floating wind turbine concept. The concept utilizes a liquid ballast mass to mitigate motions on a lightweight post-tensioned concrete platform. The simple cruciform-shaped design of the platform made of post-tensioned concrete is less expensive than steel, reducing the raw material and manufacturing cost. The use of ballast water to behave as a tuned mass damper allows a smaller platform to achieve the same motions as a much larger platform, thus reducing the mass and cost. The optimization techniques applied with these design innovations resulted in a design with a levelized cost of energy of USD 0.0753/kWh, roughly half the cost of the current state of the art.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of a Lightweight Floating Offshore Wind Turbine with Water Ballast Motion Mitigation Technology\",\"authors\":\"W. Ramsay, A. Goupee, C. Allen, A. Viselli, R. Kimball\",\"doi\":\"10.3390/wind2030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating offshore wind turbines are a promising technology for addressing energy needs by utilizing wind resources offshore. The current state of the art is based on heavy, expensive platforms to survive the ocean environment. Typical design techniques do not involve optimization because of the computationally expensive time domain solvers used to model motions and loads in the ocean environment. However, this design uses an efficient frequency domain solver with a genetic algorithm to rapidly optimize the design of a novel floating wind turbine concept. The concept utilizes a liquid ballast mass to mitigate motions on a lightweight post-tensioned concrete platform. The simple cruciform-shaped design of the platform made of post-tensioned concrete is less expensive than steel, reducing the raw material and manufacturing cost. The use of ballast water to behave as a tuned mass damper allows a smaller platform to achieve the same motions as a much larger platform, thus reducing the mass and cost. The optimization techniques applied with these design innovations resulted in a design with a levelized cost of energy of USD 0.0753/kWh, roughly half the cost of the current state of the art.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind2030029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind2030029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

漂浮式海上风力涡轮机是利用海上风力资源解决能源需求的一种很有前途的技术。目前最先进的技术是基于笨重、昂贵的平台来在海洋环境中生存。典型的设计技术不涉及优化,因为用于模拟海洋环境中的运动和载荷的时域求解器的计算成本很高。然而,本设计使用了一种高效的频域求解器和遗传算法来快速优化设计一种新颖的浮动风力涡轮机概念。该概念利用液体压载物来减轻轻质后张混凝土平台上的运动。后张混凝土制成的平台采用简单的十字形设计,比钢材便宜,降低了原材料和制造成本。使用压载水作为调谐质量阻尼器,可以使较小的平台实现与较大平台相同的运动,从而降低质量和成本。这些设计创新所采用的优化技术使设计的能源成本降至0.0753美元/千瓦时,大约是当前技术水平的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of a Lightweight Floating Offshore Wind Turbine with Water Ballast Motion Mitigation Technology
Floating offshore wind turbines are a promising technology for addressing energy needs by utilizing wind resources offshore. The current state of the art is based on heavy, expensive platforms to survive the ocean environment. Typical design techniques do not involve optimization because of the computationally expensive time domain solvers used to model motions and loads in the ocean environment. However, this design uses an efficient frequency domain solver with a genetic algorithm to rapidly optimize the design of a novel floating wind turbine concept. The concept utilizes a liquid ballast mass to mitigate motions on a lightweight post-tensioned concrete platform. The simple cruciform-shaped design of the platform made of post-tensioned concrete is less expensive than steel, reducing the raw material and manufacturing cost. The use of ballast water to behave as a tuned mass damper allows a smaller platform to achieve the same motions as a much larger platform, thus reducing the mass and cost. The optimization techniques applied with these design innovations resulted in a design with a levelized cost of energy of USD 0.0753/kWh, roughly half the cost of the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind and Structures
Wind and Structures 工程技术-工程:土木
CiteScore
2.70
自引率
18.80%
发文量
0
审稿时长
>12 weeks
期刊介绍: The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted. The main theme of the Journal is the wind effects on structures. Areas covered by the journal include: Wind loads and structural response, Bluff-body aerodynamics, Computational method, Wind tunnel modeling, Local wind environment, Codes and regulations, Wind effects on large scale structures.
期刊最新文献
Challenges and Perspectives of Wind Energy Technology Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings Numerical Modeling and Application of Horizontal-Axis Wind Turbine Arrays in Large Wind Farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1