二维范德华磁体的最新进展

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2022-01-01 DOI:10.20517/microstructures.2022.02
Hang Xu, Shengjie Xu, Xun Xu, J. Zhuang, W. Hao, Yi Du
{"title":"二维范德华磁体的最新进展","authors":"Hang Xu, Shengjie Xu, Xun Xu, J. Zhuang, W. Hao, Yi Du","doi":"10.20517/microstructures.2022.02","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) magnets have evoked tremendous interest within the research community due to their fascinating features and novel mechanisms, as well as their potential applications in magnetic nanodevices. In this review, state-of-the-art research into the exploration of 2D magnets from the perspective of their magnetic interaction and order mechanisms is discussed. The properties of these magnets can be effectively modulated by varying the external parameters, such as the charge carrier doping, thickness effect, pressure and strain. The potential applications of heterostructures of these 2D magnets in terms of the interlayer coupling strength are reviewed, and the challenges and outlook for this field are proposed.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"43 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Recent advances in two-dimensional van der Waals magnets\",\"authors\":\"Hang Xu, Shengjie Xu, Xun Xu, J. Zhuang, W. Hao, Yi Du\",\"doi\":\"10.20517/microstructures.2022.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) magnets have evoked tremendous interest within the research community due to their fascinating features and novel mechanisms, as well as their potential applications in magnetic nanodevices. In this review, state-of-the-art research into the exploration of 2D magnets from the perspective of their magnetic interaction and order mechanisms is discussed. The properties of these magnets can be effectively modulated by varying the external parameters, such as the charge carrier doping, thickness effect, pressure and strain. The potential applications of heterostructures of these 2D magnets in terms of the interlayer coupling strength are reviewed, and the challenges and outlook for this field are proposed.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2022.02\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.02","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 14

摘要

二维(2D)磁体由于其迷人的特性和新颖的机制以及在磁性纳米器件中的潜在应用而引起了研究界的极大兴趣。在这篇综述中,从磁性相互作用和有序机制的角度讨论了二维磁体的最新研究进展。通过改变载流子掺杂、厚度效应、压力和应变等外部参数,可以有效地调节这些磁体的性能。综述了异质结构二维磁体在层间耦合强度方面的潜在应用,并提出了该领域的挑战和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in two-dimensional van der Waals magnets
Two-dimensional (2D) magnets have evoked tremendous interest within the research community due to their fascinating features and novel mechanisms, as well as their potential applications in magnetic nanodevices. In this review, state-of-the-art research into the exploration of 2D magnets from the perspective of their magnetic interaction and order mechanisms is discussed. The properties of these magnets can be effectively modulated by varying the external parameters, such as the charge carrier doping, thickness effect, pressure and strain. The potential applications of heterostructures of these 2D magnets in terms of the interlayer coupling strength are reviewed, and the challenges and outlook for this field are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1