{"title":"考虑到食物网的复杂性,一种针对偷猎的战略保护的安全博弈方法","authors":"Zohreh S. Gatmiry , Ashkan Hafezalkotob , Morteza Khakzar bafruei , Roya Soltani","doi":"10.1016/j.ecocom.2021.100970","DOIUrl":null,"url":null,"abstract":"<div><p>Mitigating the poaching pressure on food webs under multiple constraints (including financial and ecological ones) remains an open problem within conservation. Within this field, mathematically modeling the effects of poaching threats on managerial decision-making is a novel approach. To fill this scientific gap, the present paper uses a security game approach to model the interactions between an environmental manager (defender) and a group of profit-seeking pursuit poachers (attackers) who target species which are nodes of the food web. Based upon the non-cooperative Stackelberg game, the objective of the defender (as leader) is to keep the food web at or near equilibrium through optimally manipulating the populations of an optimal subset of species. In contrast, each attacker strives to maximize monetary profit by hunting an optimal population size of the selected species. The model is validated by a numerical example examining the food web of the endangered Persian leopard (<em>Panthera pardus saxicolor</em>), which lives in Golestan National Park (GNP), Iran. The model provides an overarching biotic intervention strategy to keep the (1 predator-4 prey) food web near equilibrium, while only 2 prey species (the urial <em>(Ovis vignei</em>) and the red deer <em>(Cervus elaphus)</em>) are directly threatened by poachers. The examination revealed that both species population data and poaching data should be taken into account to set effective multi-species conservation prioritization levels. In a sensitivity analysis approach, it was found that, despite the fact that red deer is endangered and preferred by poachers, the deterrent penalty measure should be 1.5 times greater for poaching urial than red deer. The output analysis illustrated that, in order to bring the urial deterrent penalty measure closer to the red deer one, enforcement measures should be about 2.5 times stricter for poaching urial than red deer. The results specifically yield insight into how to optimally conserve a food web equilibrium under poaching pressure and within several constraints.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A security game approach for strategic conservation against poaching considering food web complexities\",\"authors\":\"Zohreh S. Gatmiry , Ashkan Hafezalkotob , Morteza Khakzar bafruei , Roya Soltani\",\"doi\":\"10.1016/j.ecocom.2021.100970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitigating the poaching pressure on food webs under multiple constraints (including financial and ecological ones) remains an open problem within conservation. Within this field, mathematically modeling the effects of poaching threats on managerial decision-making is a novel approach. To fill this scientific gap, the present paper uses a security game approach to model the interactions between an environmental manager (defender) and a group of profit-seeking pursuit poachers (attackers) who target species which are nodes of the food web. Based upon the non-cooperative Stackelberg game, the objective of the defender (as leader) is to keep the food web at or near equilibrium through optimally manipulating the populations of an optimal subset of species. In contrast, each attacker strives to maximize monetary profit by hunting an optimal population size of the selected species. The model is validated by a numerical example examining the food web of the endangered Persian leopard (<em>Panthera pardus saxicolor</em>), which lives in Golestan National Park (GNP), Iran. The model provides an overarching biotic intervention strategy to keep the (1 predator-4 prey) food web near equilibrium, while only 2 prey species (the urial <em>(Ovis vignei</em>) and the red deer <em>(Cervus elaphus)</em>) are directly threatened by poachers. The examination revealed that both species population data and poaching data should be taken into account to set effective multi-species conservation prioritization levels. In a sensitivity analysis approach, it was found that, despite the fact that red deer is endangered and preferred by poachers, the deterrent penalty measure should be 1.5 times greater for poaching urial than red deer. The output analysis illustrated that, in order to bring the urial deterrent penalty measure closer to the red deer one, enforcement measures should be about 2.5 times stricter for poaching urial than red deer. The results specifically yield insight into how to optimally conserve a food web equilibrium under poaching pressure and within several constraints.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X21000635\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X21000635","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
A security game approach for strategic conservation against poaching considering food web complexities
Mitigating the poaching pressure on food webs under multiple constraints (including financial and ecological ones) remains an open problem within conservation. Within this field, mathematically modeling the effects of poaching threats on managerial decision-making is a novel approach. To fill this scientific gap, the present paper uses a security game approach to model the interactions between an environmental manager (defender) and a group of profit-seeking pursuit poachers (attackers) who target species which are nodes of the food web. Based upon the non-cooperative Stackelberg game, the objective of the defender (as leader) is to keep the food web at or near equilibrium through optimally manipulating the populations of an optimal subset of species. In contrast, each attacker strives to maximize monetary profit by hunting an optimal population size of the selected species. The model is validated by a numerical example examining the food web of the endangered Persian leopard (Panthera pardus saxicolor), which lives in Golestan National Park (GNP), Iran. The model provides an overarching biotic intervention strategy to keep the (1 predator-4 prey) food web near equilibrium, while only 2 prey species (the urial (Ovis vignei) and the red deer (Cervus elaphus)) are directly threatened by poachers. The examination revealed that both species population data and poaching data should be taken into account to set effective multi-species conservation prioritization levels. In a sensitivity analysis approach, it was found that, despite the fact that red deer is endangered and preferred by poachers, the deterrent penalty measure should be 1.5 times greater for poaching urial than red deer. The output analysis illustrated that, in order to bring the urial deterrent penalty measure closer to the red deer one, enforcement measures should be about 2.5 times stricter for poaching urial than red deer. The results specifically yield insight into how to optimally conserve a food web equilibrium under poaching pressure and within several constraints.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity