{"title":"添加硼和钛改性铝6063组织以提高导热性","authors":"M. Shaira, Suleiman Yousef","doi":"10.1155/2018/8905469","DOIUrl":null,"url":null,"abstract":"This study aimed to improve the thermal conductivity of the Aluminium 6063 for heat sinks applications used in Central Processing Unit (CPU) of computers. Several studies had used different additional elements for this goal. In this paper, we studied the influence of Titanium and Boron addition on the thermal conductivity of Aluminium 6063. Several casting alloys samples were prepared with different percentage of addition elements and then heat-treated by homogenization and aging treatments. The results showed an important modification in thermal conductivity value per rapport to the reference metal, depending on the element of addition and its percentage. The bigger evolution was by using Boron in small percentage. More than 13% of the improvement was realized in the thermal conductivity with the addition of only 0.05% of Boron.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"49 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity\",\"authors\":\"M. Shaira, Suleiman Yousef\",\"doi\":\"10.1155/2018/8905469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to improve the thermal conductivity of the Aluminium 6063 for heat sinks applications used in Central Processing Unit (CPU) of computers. Several studies had used different additional elements for this goal. In this paper, we studied the influence of Titanium and Boron addition on the thermal conductivity of Aluminium 6063. Several casting alloys samples were prepared with different percentage of addition elements and then heat-treated by homogenization and aging treatments. The results showed an important modification in thermal conductivity value per rapport to the reference metal, depending on the element of addition and its percentage. The bigger evolution was by using Boron in small percentage. More than 13% of the improvement was realized in the thermal conductivity with the addition of only 0.05% of Boron.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"49 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/8905469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/8905469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity
This study aimed to improve the thermal conductivity of the Aluminium 6063 for heat sinks applications used in Central Processing Unit (CPU) of computers. Several studies had used different additional elements for this goal. In this paper, we studied the influence of Titanium and Boron addition on the thermal conductivity of Aluminium 6063. Several casting alloys samples were prepared with different percentage of addition elements and then heat-treated by homogenization and aging treatments. The results showed an important modification in thermal conductivity value per rapport to the reference metal, depending on the element of addition and its percentage. The bigger evolution was by using Boron in small percentage. More than 13% of the improvement was realized in the thermal conductivity with the addition of only 0.05% of Boron.