仿生计算:算法回顾、深度分析和应用范围

Ashraf Darwish
{"title":"仿生计算:算法回顾、深度分析和应用范围","authors":"Ashraf Darwish","doi":"10.1016/j.fcij.2018.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Bio-inspired computing represents the umbrella of different studies of computer science, mathematics, and biology in the last years. Bio-inspired computing optimization algorithms is an emerging approach which is based on the principles and inspiration of the biological evolution of nature to develop new and robust competing techniques. In the last years, the bio-inspired optimization algorithms are recognized in machine learning to address the optimal solutions of complex problems in science and engineering. However, these problems are usually nonlinear and restricted to multiple nonlinear constraints which propose many problems such as time requirements and high dimensionality to find the optimal solution. To tackle the problems of the traditional optimization algorithms, the recent trends tend to apply bio-inspired optimization algorithms which represent a promising approach for solving complex optimization problems. This paper presents state-of-art of nine of recent bio-inspired algorithms, gap analysis, and its applications namely; Genetic Bee Colony (GBC) Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Search Algorithm (ESA), Chicken Swarm Optimization Algorithm (CSOA), Moth flame optimization (MFO), and Grey Wolf Optimization (GWO) algorithm. The previous related works are collected from Scopus databases are presented. Also, we explore some key issues in optimization and some applications for further research. We also analyze in-depth discussions the essence of these algorithms and their connections to self-organization and its applications in different areas of research are presented. As a result, the proposed analysis of these algorithms leads to some key problems that have to be addressed in the future.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 2","pages":"Pages 231-246"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2018.06.001","citationCount":"172","resultStr":"{\"title\":\"Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications\",\"authors\":\"Ashraf Darwish\",\"doi\":\"10.1016/j.fcij.2018.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bio-inspired computing represents the umbrella of different studies of computer science, mathematics, and biology in the last years. Bio-inspired computing optimization algorithms is an emerging approach which is based on the principles and inspiration of the biological evolution of nature to develop new and robust competing techniques. In the last years, the bio-inspired optimization algorithms are recognized in machine learning to address the optimal solutions of complex problems in science and engineering. However, these problems are usually nonlinear and restricted to multiple nonlinear constraints which propose many problems such as time requirements and high dimensionality to find the optimal solution. To tackle the problems of the traditional optimization algorithms, the recent trends tend to apply bio-inspired optimization algorithms which represent a promising approach for solving complex optimization problems. This paper presents state-of-art of nine of recent bio-inspired algorithms, gap analysis, and its applications namely; Genetic Bee Colony (GBC) Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Search Algorithm (ESA), Chicken Swarm Optimization Algorithm (CSOA), Moth flame optimization (MFO), and Grey Wolf Optimization (GWO) algorithm. The previous related works are collected from Scopus databases are presented. Also, we explore some key issues in optimization and some applications for further research. We also analyze in-depth discussions the essence of these algorithms and their connections to self-organization and its applications in different areas of research are presented. As a result, the proposed analysis of these algorithms leads to some key problems that have to be addressed in the future.</p></div>\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"3 2\",\"pages\":\"Pages 231-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fcij.2018.06.001\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314728818300631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728818300631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172

摘要

近年来,受生物启发的计算代表了计算机科学、数学和生物学的不同研究。仿生计算优化算法是一种基于自然界生物进化的原理和灵感来开发新的、强大的竞争技术的新兴方法。在过去的几年里,生物优化算法在机器学习中得到了认可,以解决科学和工程中复杂问题的最佳解决方案。然而,这些问题通常是非线性的,并且受到多个非线性约束的限制,这给寻找最优解提出了许多时间要求和高维数等问题。为了解决传统优化算法的问题,最近的趋势是应用仿生优化算法,这代表了解决复杂优化问题的一种有前途的方法。本文介绍了最近九种生物启发算法的现状,差距分析及其应用,即;遗传蜂群算法(GBC)、鱼群算法(FSA)、猫群优化算法(CSO)、鲸鱼优化算法(WOA)、人工藻类算法(AAA)、大象搜索算法(ESA)、鸡群优化算法(CSOA)、蛾焰优化算法(MFO)、灰狼优化算法(GWO)。本文介绍了前人从Scopus数据库中收集的相关研究成果。同时,对优化中的一些关键问题和有待进一步研究的应用进行了探讨。我们还深入分析讨论了这些算法的本质及其与自组织的联系,并介绍了其在不同研究领域的应用。因此,对这些算法提出的分析导致了一些关键问题,这些问题必须在未来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications

Bio-inspired computing represents the umbrella of different studies of computer science, mathematics, and biology in the last years. Bio-inspired computing optimization algorithms is an emerging approach which is based on the principles and inspiration of the biological evolution of nature to develop new and robust competing techniques. In the last years, the bio-inspired optimization algorithms are recognized in machine learning to address the optimal solutions of complex problems in science and engineering. However, these problems are usually nonlinear and restricted to multiple nonlinear constraints which propose many problems such as time requirements and high dimensionality to find the optimal solution. To tackle the problems of the traditional optimization algorithms, the recent trends tend to apply bio-inspired optimization algorithms which represent a promising approach for solving complex optimization problems. This paper presents state-of-art of nine of recent bio-inspired algorithms, gap analysis, and its applications namely; Genetic Bee Colony (GBC) Algorithm, Fish Swarm Algorithm (FSA), Cat Swarm Optimization (CSO), Whale Optimization Algorithm (WOA), Artificial Algae Algorithm (AAA), Elephant Search Algorithm (ESA), Chicken Swarm Optimization Algorithm (CSOA), Moth flame optimization (MFO), and Grey Wolf Optimization (GWO) algorithm. The previous related works are collected from Scopus databases are presented. Also, we explore some key issues in optimization and some applications for further research. We also analyze in-depth discussions the essence of these algorithms and their connections to self-organization and its applications in different areas of research are presented. As a result, the proposed analysis of these algorithms leads to some key problems that have to be addressed in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1