基于约束可调q小波变换的心音信号分析

Shivnarayan Patidar, Ram Bilas Pachori
{"title":"基于约束可调q小波变换的心音信号分析","authors":"Shivnarayan Patidar,&nbsp;Ram Bilas Pachori","doi":"10.1016/j.aasri.2013.10.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new method for analysis of cardiac sound signals containing murmurs using constrained tunable-Q wavelet transform (TQWT). The fundamental heart sounds (FHS) and murmurs are separately reconstructed by suitably constraining TQWT. The segmentation of reconstructed murmurs into heart beat cycles is achieved using cardiac sound characteristic wave-form (CSCW) of reconstructed FHS. The frequency domain based approximate entropy, spectral entropy, Lempel-Ziv complexity, and time domain Shannon entropy are computed for each segmented heart beat cycles for least squares support vector machine (LS-SVM) based classification. The experimental results are included to show the effectiveness of the proposed method.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"4 ","pages":"Pages 57-63"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.010","citationCount":"12","resultStr":"{\"title\":\"Constrained Tunable-Q Wavelet Transform based Analysis of Cardiac Sound Signals\",\"authors\":\"Shivnarayan Patidar,&nbsp;Ram Bilas Pachori\",\"doi\":\"10.1016/j.aasri.2013.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a new method for analysis of cardiac sound signals containing murmurs using constrained tunable-Q wavelet transform (TQWT). The fundamental heart sounds (FHS) and murmurs are separately reconstructed by suitably constraining TQWT. The segmentation of reconstructed murmurs into heart beat cycles is achieved using cardiac sound characteristic wave-form (CSCW) of reconstructed FHS. The frequency domain based approximate entropy, spectral entropy, Lempel-Ziv complexity, and time domain Shannon entropy are computed for each segmented heart beat cycles for least squares support vector machine (LS-SVM) based classification. The experimental results are included to show the effectiveness of the proposed method.</p></div>\",\"PeriodicalId\":100008,\"journal\":{\"name\":\"AASRI Procedia\",\"volume\":\"4 \",\"pages\":\"Pages 57-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.010\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AASRI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212671613000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671613000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种利用约束可调q小波变换(TQWT)分析含杂音的心音信号的新方法。通过对TQWT进行适当的约束,分别对心音和杂音进行重构。利用重构FHS的心音特征波形(CSCW)实现了重构杂音的心跳周期分割。基于最小二乘支持向量机(least squares support vector machine, LS-SVM)对每段心跳周期进行分类,计算基于频域的近似熵、谱熵、Lempel-Ziv复杂度和时域Shannon熵。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constrained Tunable-Q Wavelet Transform based Analysis of Cardiac Sound Signals

In this paper, we present a new method for analysis of cardiac sound signals containing murmurs using constrained tunable-Q wavelet transform (TQWT). The fundamental heart sounds (FHS) and murmurs are separately reconstructed by suitably constraining TQWT. The segmentation of reconstructed murmurs into heart beat cycles is achieved using cardiac sound characteristic wave-form (CSCW) of reconstructed FHS. The frequency domain based approximate entropy, spectral entropy, Lempel-Ziv complexity, and time domain Shannon entropy are computed for each segmented heart beat cycles for least squares support vector machine (LS-SVM) based classification. The experimental results are included to show the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1