低浓度贵金属下有机三烷氧基硅烷介导镍钯纳米催化剂的合成:加速析氢动力学的催化剂

P. Pandey, Shubhangi Shukla, R. Narayan
{"title":"低浓度贵金属下有机三烷氧基硅烷介导镍钯纳米催化剂的合成:加速析氢动力学的催化剂","authors":"P. Pandey, Shubhangi Shukla, R. Narayan","doi":"10.1116/6.0000881","DOIUrl":null,"url":null,"abstract":"The fabrication of alkoxysilane-based nickel (Ni)–palladium (Pd) bimetallic nanoparticle catalysts with several compositions (Pd—0.001M and Ni—0.001–0.1M) was attempted for the first time; these materials were investigated for use as low-cost catalysts in the hydrogen evolution reaction (HER). Functional alkoxysilane [2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane]-assisted conversion of Pd2+ to Pd0 was demonstrated. Palladium nanocrystallites with an average dimension 4.03 ± 1.29 nm were synthesized, which acted as seeds in the synthesis of Ni–Pd bimetallic nanoparticles. The effect of the nanoparticle catalysts on the HER in an alkaline environment was studied using linear sweep voltammetry and electrochemical impedance spectroscopy. A nanostructured thin film containing Ni3PdNPs produced a 100 mA cm−2 current density at an overpotential of −90 mV with a small Tafel slope of 25 mV dec−1 at a catalyst loading of 0.1 mg cm−2. The annealed Ni3PdNPs catalyst further enhanced the current density to ∼ 240 mA cm−2 at an overpotential of −56 mV.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organotrialkoxysilane-mediated synthesis of Ni–Pd nanocatalysts at lower concentrations of noble metal: Catalysts for faster hydrogen evolution kinetics\",\"authors\":\"P. Pandey, Shubhangi Shukla, R. Narayan\",\"doi\":\"10.1116/6.0000881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fabrication of alkoxysilane-based nickel (Ni)–palladium (Pd) bimetallic nanoparticle catalysts with several compositions (Pd—0.001M and Ni—0.001–0.1M) was attempted for the first time; these materials were investigated for use as low-cost catalysts in the hydrogen evolution reaction (HER). Functional alkoxysilane [2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane]-assisted conversion of Pd2+ to Pd0 was demonstrated. Palladium nanocrystallites with an average dimension 4.03 ± 1.29 nm were synthesized, which acted as seeds in the synthesis of Ni–Pd bimetallic nanoparticles. The effect of the nanoparticle catalysts on the HER in an alkaline environment was studied using linear sweep voltammetry and electrochemical impedance spectroscopy. A nanostructured thin film containing Ni3PdNPs produced a 100 mA cm−2 current density at an overpotential of −90 mV with a small Tafel slope of 25 mV dec−1 at a catalyst loading of 0.1 mg cm−2. The annealed Ni3PdNPs catalyst further enhanced the current density to ∼ 240 mA cm−2 at an overpotential of −56 mV.\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0000881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次尝试制备了几种组分(Pd - 0.001 m和Ni - 0.001 - 0.1 m)的烷氧硅烷基镍-钯双金属纳米颗粒催化剂;研究了这些材料作为析氢反应(HER)的低成本催化剂。证实了功能化烷氧基硅烷[2-(3,4环氧环己基)乙基三甲氧基硅烷]辅助Pd2+转化为Pd0。合成了平均尺寸为4.03±1.29 nm的钯纳米晶,为合成Ni-Pd双金属纳米粒子提供了种子。采用线性扫描伏安法和电化学阻抗法研究了纳米颗粒催化剂对碱性环境下HER的影响。在催化剂负载为0.1 mg cm−2时,Ni3PdNPs纳米结构薄膜在- 90 mV过电位下产生100 mA cm−2电流密度,Tafel斜率为25 mV dec−1。退火后的Ni3PdNPs催化剂在过电位为- 56 mV时,电流密度进一步提高到~ 240 mA cm−2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organotrialkoxysilane-mediated synthesis of Ni–Pd nanocatalysts at lower concentrations of noble metal: Catalysts for faster hydrogen evolution kinetics
The fabrication of alkoxysilane-based nickel (Ni)–palladium (Pd) bimetallic nanoparticle catalysts with several compositions (Pd—0.001M and Ni—0.001–0.1M) was attempted for the first time; these materials were investigated for use as low-cost catalysts in the hydrogen evolution reaction (HER). Functional alkoxysilane [2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane]-assisted conversion of Pd2+ to Pd0 was demonstrated. Palladium nanocrystallites with an average dimension 4.03 ± 1.29 nm were synthesized, which acted as seeds in the synthesis of Ni–Pd bimetallic nanoparticles. The effect of the nanoparticle catalysts on the HER in an alkaline environment was studied using linear sweep voltammetry and electrochemical impedance spectroscopy. A nanostructured thin film containing Ni3PdNPs produced a 100 mA cm−2 current density at an overpotential of −90 mV with a small Tafel slope of 25 mV dec−1 at a catalyst loading of 0.1 mg cm−2. The annealed Ni3PdNPs catalyst further enhanced the current density to ∼ 240 mA cm−2 at an overpotential of −56 mV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1