共轭梯度法的平行牛顿-切比雪夫多项式预调节器

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2021-02-14 DOI:10.1002/cmm4.1153
Luca Bergamaschi, Angeles Martinez Calomardo
{"title":"共轭梯度法的平行牛顿-切比雪夫多项式预调节器","authors":"Luca Bergamaschi,&nbsp;Angeles Martinez Calomardo","doi":"10.1002/cmm4.1153","DOIUrl":null,"url":null,"abstract":"<p>In this note, we exploit polynomial preconditioners for the conjugate gradient method to solve large symmetric positive definite linear systems in a parallel environment. We put in connection a specialized Newton method to solve the matrix equation <i>X</i><sup>−1</sup> = <i>A</i> and the Chebyshev polynomials for preconditioning. We propose a simple modification of one parameter which avoids clustering of extremal eigenvalues in order to speed-up convergence. We provide results on very large matrices (up to 8.6 billion unknowns) in a parallel environment showing the efficiency of the proposed class of preconditioners.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1153","citationCount":"3","resultStr":"{\"title\":\"Parallel Newton–Chebyshev polynomial preconditioners for the conjugate gradient method\",\"authors\":\"Luca Bergamaschi,&nbsp;Angeles Martinez Calomardo\",\"doi\":\"10.1002/cmm4.1153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we exploit polynomial preconditioners for the conjugate gradient method to solve large symmetric positive definite linear systems in a parallel environment. We put in connection a specialized Newton method to solve the matrix equation <i>X</i><sup>−1</sup> = <i>A</i> and the Chebyshev polynomials for preconditioning. We propose a simple modification of one parameter which avoids clustering of extremal eigenvalues in order to speed-up convergence. We provide results on very large matrices (up to 8.6 billion unknowns) in a parallel environment showing the efficiency of the proposed class of preconditioners.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1153\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们利用共轭梯度法的多项式预条件来求解并行环境下的大型对称正定线性系统。我们将求解矩阵方程X−1 = a的专用牛顿法和用于预处理的切比雪夫多项式联系起来。我们提出了一个简单的参数修改,避免了极值特征值的聚类,以加快收敛速度。我们在并行环境中提供了非常大的矩阵(高达86亿个未知数)的结果,显示了所提出的一类预调节器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Newton–Chebyshev polynomial preconditioners for the conjugate gradient method

In this note, we exploit polynomial preconditioners for the conjugate gradient method to solve large symmetric positive definite linear systems in a parallel environment. We put in connection a specialized Newton method to solve the matrix equation X−1 = A and the Chebyshev polynomials for preconditioning. We propose a simple modification of one parameter which avoids clustering of extremal eigenvalues in order to speed-up convergence. We provide results on very large matrices (up to 8.6 billion unknowns) in a parallel environment showing the efficiency of the proposed class of preconditioners.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques On the Limitations of Univariate Grey Prediction Models: Findings and Failures Generalized Confidence Interval for the Difference Between Percentiles of Birnbaum–Saunders Distributions and Its Application to PM2.5 in Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1