你在摆什么姿势:基于粗粒度语义的手势描述数据集

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00044
Luchun Chen, Guorun Wang, Yaoru Sun, Rui Pang, Chengzhi Zhang
{"title":"你在摆什么姿势:基于粗粒度语义的手势描述数据集","authors":"Luchun Chen, Guorun Wang, Yaoru Sun, Rui Pang, Chengzhi Zhang","doi":"10.1109/ICNLP58431.2023.00044","DOIUrl":null,"url":null,"abstract":"At present, algorithms for human pose estimation and image caption are prosperous but have disadvantages. The current mainstream algorithms of pose estimation only present the information of key nodes as a scalar but lacks semantics, while in most of algorithms for human image captioning, more attention is paid to the relationship between human bodies and the background, without understanding the human body semantics, which can not meet the need of deep visual understanding.In this paper, to fill in imperfection in previous studies, we provide a novel data set of the caption of human pose estimation for the deep understanding of image semantics. Moreover, we use the pose estimation system to extract posture figures and then we utilize the encoder-decoder to generate the captions of human poses in single picture, to produce deeper understanding of the original image. Lastly, we use Bert to carry out the next step of reasoning and get a further understanding. Our data set is open source.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"23 1","pages":"208-212"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What are You Posing: A gesture description dataset based on coarse-grained semantics\",\"authors\":\"Luchun Chen, Guorun Wang, Yaoru Sun, Rui Pang, Chengzhi Zhang\",\"doi\":\"10.1109/ICNLP58431.2023.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, algorithms for human pose estimation and image caption are prosperous but have disadvantages. The current mainstream algorithms of pose estimation only present the information of key nodes as a scalar but lacks semantics, while in most of algorithms for human image captioning, more attention is paid to the relationship between human bodies and the background, without understanding the human body semantics, which can not meet the need of deep visual understanding.In this paper, to fill in imperfection in previous studies, we provide a novel data set of the caption of human pose estimation for the deep understanding of image semantics. Moreover, we use the pose estimation system to extract posture figures and then we utilize the encoder-decoder to generate the captions of human poses in single picture, to produce deeper understanding of the original image. Lastly, we use Bert to carry out the next step of reasoning and get a further understanding. Our data set is open source.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"23 1\",\"pages\":\"208-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

目前,人体姿态估计和图像标题的算法都很发达,但也存在不足。目前主流的姿态估计算法只将关键节点的信息以标量的形式呈现,缺乏语义,而在大多数人体图像字幕算法中,更多地关注人体与背景的关系,没有理解人体语义,无法满足深度视觉理解的需要。为了弥补以往研究的不足,本文提出了一种新的人体姿态估计标题数据集,以加深对图像语义的理解。此外,我们利用姿态估计系统提取姿态图形,然后利用编解码器在单幅图像中生成人体姿态的字幕,从而对原始图像产生更深层次的理解。最后,我们使用Bert进行下一步的推理,得到进一步的理解。我们的数据集是开源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What are You Posing: A gesture description dataset based on coarse-grained semantics
At present, algorithms for human pose estimation and image caption are prosperous but have disadvantages. The current mainstream algorithms of pose estimation only present the information of key nodes as a scalar but lacks semantics, while in most of algorithms for human image captioning, more attention is paid to the relationship between human bodies and the background, without understanding the human body semantics, which can not meet the need of deep visual understanding.In this paper, to fill in imperfection in previous studies, we provide a novel data set of the caption of human pose estimation for the deep understanding of image semantics. Moreover, we use the pose estimation system to extract posture figures and then we utilize the encoder-decoder to generate the captions of human poses in single picture, to produce deeper understanding of the original image. Lastly, we use Bert to carry out the next step of reasoning and get a further understanding. Our data set is open source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1