阵列操作中热写热读组合式原子力显微镜悬臂的设计

W. King, T. Kenny, K. Goodson, G. Cross, M. Despont, U. Dürig, H. Rothuizen, G. Binnig, P. Vettiger
{"title":"阵列操作中热写热读组合式原子力显微镜悬臂的设计","authors":"W. King, T. Kenny, K. Goodson, G. Cross, M. Despont, U. Dürig, H. Rothuizen, G. Binnig, P. Vettiger","doi":"10.1109/JMEMS.2002.803283","DOIUrl":null,"url":null,"abstract":"In thermomechanical data writing, a resistively-heated atomic force microscope (AFM) cantilever tip forms indentations in a thin polymer film. The same cantilever operates as a thermal proximity sensor to detect the presence of previously written data bits. This paper uses recent progress in thermal analysis of the writing and reading modes to develop new cantilever designs for increased speed, sensitivity, and reduced power consumption in both writing and reading operation. Measurements of cantilever electrical resistance during heating reveals physical limits of cantilever writing and reading, and verifies a finite-difference thermal and electrical simulation of cantilever operation. This work proposes two new cantilever designs that correspond to fabrication technology benchmarks. Simulations predict that the proposed cantilevers have a higher data rate and are more sensitive than the present cantilever. The various cantilever designs offer single-bit writing times of 0.2 /spl mu/s-25 /spl mu/s for driving voltages of 2-25 V. The thermal reading /spl Delta/R/R sensitivity is as high as 4/spl times/10/sup -4/ per vertical nm in near steady-state operation.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation\",\"authors\":\"W. King, T. Kenny, K. Goodson, G. Cross, M. Despont, U. Dürig, H. Rothuizen, G. Binnig, P. Vettiger\",\"doi\":\"10.1109/JMEMS.2002.803283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In thermomechanical data writing, a resistively-heated atomic force microscope (AFM) cantilever tip forms indentations in a thin polymer film. The same cantilever operates as a thermal proximity sensor to detect the presence of previously written data bits. This paper uses recent progress in thermal analysis of the writing and reading modes to develop new cantilever designs for increased speed, sensitivity, and reduced power consumption in both writing and reading operation. Measurements of cantilever electrical resistance during heating reveals physical limits of cantilever writing and reading, and verifies a finite-difference thermal and electrical simulation of cantilever operation. This work proposes two new cantilever designs that correspond to fabrication technology benchmarks. Simulations predict that the proposed cantilevers have a higher data rate and are more sensitive than the present cantilever. The various cantilever designs offer single-bit writing times of 0.2 /spl mu/s-25 /spl mu/s for driving voltages of 2-25 V. The thermal reading /spl Delta/R/R sensitivity is as high as 4/spl times/10/sup -4/ per vertical nm in near steady-state operation.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2002.803283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2002.803283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

摘要

在热机械数据写入中,电阻加热原子力显微镜(AFM)的悬臂尖端在薄聚合物薄膜上形成压痕。同样的悬臂作为热接近传感器来检测先前写入的数据位的存在。本文利用写入和读取模式的热分析的最新进展来开发新的悬臂设计,以提高写入和读取操作的速度,灵敏度和降低功耗。加热过程中悬臂电阻的测量揭示了悬臂写入和读取的物理限制,并验证了悬臂运行的有限差分热电模拟。这项工作提出了两种新的悬臂设计,对应于制造技术基准。仿真结果表明,所提出的悬臂梁比现有悬臂梁具有更高的数据速率和更高的灵敏度。各种悬臂设计提供0.2 /spl mu/s-25 /spl mu/s的单比特写入时间,驱动电压为2- 25v。在近稳态工作时,热读数/spl δ /R/R灵敏度高达4/spl倍/10/sup -4/每垂直nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation
In thermomechanical data writing, a resistively-heated atomic force microscope (AFM) cantilever tip forms indentations in a thin polymer film. The same cantilever operates as a thermal proximity sensor to detect the presence of previously written data bits. This paper uses recent progress in thermal analysis of the writing and reading modes to develop new cantilever designs for increased speed, sensitivity, and reduced power consumption in both writing and reading operation. Measurements of cantilever electrical resistance during heating reveals physical limits of cantilever writing and reading, and verifies a finite-difference thermal and electrical simulation of cantilever operation. This work proposes two new cantilever designs that correspond to fabrication technology benchmarks. Simulations predict that the proposed cantilevers have a higher data rate and are more sensitive than the present cantilever. The various cantilever designs offer single-bit writing times of 0.2 /spl mu/s-25 /spl mu/s for driving voltages of 2-25 V. The thermal reading /spl Delta/R/R sensitivity is as high as 4/spl times/10/sup -4/ per vertical nm in near steady-state operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOEMS tuning element for a Littrow external cavity laser Control mechanism of an organic self-regulating microfluidic system Deformation of blanketed and patterned bilayer thin-film microstructures during post-release and cyclic thermal loading Power delivery and locomotion of untethered microactuators Effect of trimethylsilane flow rate on the growth of SiC thin-films for fiber-optic temperature sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1