QAnswer:一个问答原型,弥合了相当一部分LOD云和最终用户之间的差距

Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully, K. Singh, P. Maret
{"title":"QAnswer:一个问答原型,弥合了相当一部分LOD云和最终用户之间的差距","authors":"Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully, K. Singh, P. Maret","doi":"10.1145/3308558.3314124","DOIUrl":null,"url":null,"abstract":"We present QAnswer, a Question Answering system which queries at the same time 3 core datasets of the Semantic Web, that are relevant for end-users. These datasets are Wikidata with Lexemes, LinkedGeodata and Musicbrainz. Additionally, it is possible to query these datasets in English, German, French, Italian, Spanish, Pourtuguese, Arabic and Chinese. Moreover, QAnswer includes a fallback option to the search engine Qwant when the answer to a question cannot be found in the datasets mentioned above. These features make QAnswer as the first prototype of a Question Answering System over a considerable part of the LOD cloud.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"QAnswer: A Question Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users\",\"authors\":\"Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully, K. Singh, P. Maret\",\"doi\":\"10.1145/3308558.3314124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present QAnswer, a Question Answering system which queries at the same time 3 core datasets of the Semantic Web, that are relevant for end-users. These datasets are Wikidata with Lexemes, LinkedGeodata and Musicbrainz. Additionally, it is possible to query these datasets in English, German, French, Italian, Spanish, Pourtuguese, Arabic and Chinese. Moreover, QAnswer includes a fallback option to the search engine Qwant when the answer to a question cannot be found in the datasets mentioned above. These features make QAnswer as the first prototype of a Question Answering System over a considerable part of the LOD cloud.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3314124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3314124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们提出了QAnswer,一个问答系统,同时查询三个核心数据集的语义网,这是与最终用户相关的。这些数据集是维基数据与lexeme, LinkedGeodata和Musicbrainz。此外,还可以用英语、德语、法语、意大利语、西班牙语、葡萄牙语、阿拉伯语和中文查询这些数据集。此外,当在上面提到的数据集中找不到问题的答案时,QAnswer包含了一个搜索引擎Qwant的备用选项。这些特性使QAnswer成为在LOD云的相当一部分上的第一个问答系统原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QAnswer: A Question Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users
We present QAnswer, a Question Answering system which queries at the same time 3 core datasets of the Semantic Web, that are relevant for end-users. These datasets are Wikidata with Lexemes, LinkedGeodata and Musicbrainz. Additionally, it is possible to query these datasets in English, German, French, Italian, Spanish, Pourtuguese, Arabic and Chinese. Moreover, QAnswer includes a fallback option to the search engine Qwant when the answer to a question cannot be found in the datasets mentioned above. These features make QAnswer as the first prototype of a Question Answering System over a considerable part of the LOD cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1