Tim J. Wooster, Juliette S. Behra, Adam Burbidge, Hans Jörg Limbach
{"title":"设计生物聚合物水凝胶颗粒分散体的微观结构,以在食品中提供功能","authors":"Tim J. Wooster, Juliette S. Behra, Adam Burbidge, Hans Jörg Limbach","doi":"10.1016/j.cocis.2023.101729","DOIUrl":null,"url":null,"abstract":"<div><p>Biopolymer hydrogel particles provide a wide range of advantages to food applications due to their highly hydrophilic nature, the ability to tailor micro-/macro-structure, and their complex rheology as dispersions. In food, dispersions of cross-linked hydrogel particles are increasingly used to create unique appearances or textures, novel aroma experiences, and/or for controlled-release applications. Mastering food biopolymer particle dispersions requires understanding of biopolymer physicochemistry, controlled microstructure creation, particle interactions that govern flow behavior, and the characterization techniques that give insight into the structure-function relationships across the different length scales. In the present review, recent progress in cross-linked food biopolymer hydrogels across these domains is presented with a particular focus on fluid gel dispersions and controlled release. We highlight how emerging technologies/techniques might enable new microstructural understanding or designer biopolymer sequences. Finally, we highlight how these developments help to fully unlock biopolymer hydrogel dispersions for food applications.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the microstructure of biopolymer hydrogel particle dispersions to deliver functionality in foods\",\"authors\":\"Tim J. Wooster, Juliette S. Behra, Adam Burbidge, Hans Jörg Limbach\",\"doi\":\"10.1016/j.cocis.2023.101729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biopolymer hydrogel particles provide a wide range of advantages to food applications due to their highly hydrophilic nature, the ability to tailor micro-/macro-structure, and their complex rheology as dispersions. In food, dispersions of cross-linked hydrogel particles are increasingly used to create unique appearances or textures, novel aroma experiences, and/or for controlled-release applications. Mastering food biopolymer particle dispersions requires understanding of biopolymer physicochemistry, controlled microstructure creation, particle interactions that govern flow behavior, and the characterization techniques that give insight into the structure-function relationships across the different length scales. In the present review, recent progress in cross-linked food biopolymer hydrogels across these domains is presented with a particular focus on fluid gel dispersions and controlled release. We highlight how emerging technologies/techniques might enable new microstructural understanding or designer biopolymer sequences. Finally, we highlight how these developments help to fully unlock biopolymer hydrogel dispersions for food applications.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000547\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000547","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Engineering the microstructure of biopolymer hydrogel particle dispersions to deliver functionality in foods
Biopolymer hydrogel particles provide a wide range of advantages to food applications due to their highly hydrophilic nature, the ability to tailor micro-/macro-structure, and their complex rheology as dispersions. In food, dispersions of cross-linked hydrogel particles are increasingly used to create unique appearances or textures, novel aroma experiences, and/or for controlled-release applications. Mastering food biopolymer particle dispersions requires understanding of biopolymer physicochemistry, controlled microstructure creation, particle interactions that govern flow behavior, and the characterization techniques that give insight into the structure-function relationships across the different length scales. In the present review, recent progress in cross-linked food biopolymer hydrogels across these domains is presented with a particular focus on fluid gel dispersions and controlled release. We highlight how emerging technologies/techniques might enable new microstructural understanding or designer biopolymer sequences. Finally, we highlight how these developments help to fully unlock biopolymer hydrogel dispersions for food applications.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.