{"title":"分支关节机器人动力学辨识的非冗余惯性参数确定","authors":"Chao Tan, Huan Zhao, H. Ding","doi":"10.1108/ir-12-2021-0296","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBranched articulated robots (BARs) are highly non-linear systems; accurate dynamic identification is critical for model-based control in high-speed and heavy-load applications. However, due to some dynamic parameters being redundant, dynamic models are singular, which increases the calculation amount and reduces the robustness of identification. This paper aims to propose a novel methodology for the dynamic analysis and redundant parameters elimination of BARs.\n\n\nDesign/methodology/approach\nAt first, the motion of a rigid body is divided into constraint-dependent and constraint-independent. The redundancy of inertial parameters is analyzed from physical constraints. Then, the redundant parameters are eliminated by mapping posterior links to their antecedents, which can be applied for re-deriving the Newton–Euler formulas. Finally, through parameter transformation, the presented dynamic model is non-singular and available for identification directly.\n\n\nFindings\nNew formulas for redundant parameters elimination are explicit and computationally efficient. This unifies the redundant parameters elimination of prismatic and revolute joints for BARs, and it is also applicable to other types of joints containing constraints. The proposed approach is conducive to facilitating the modelling phase during the robot identification. Simulation studies are conducted to illustrate the effectiveness of the proposed redundant parameters elimination and non-singular dynamic model determination. Experimental studies are carried out to verify the result of the identification algorithm.\n\n\nOriginality/value\nThis work proposes to determine and directly identify the non-redundant dynamic model of robots, which can help to reduce the procedure of obtaining the reversible regression matrix for identification.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-redundant inertial parameters determination for dynamic identification of branched articulated robots\",\"authors\":\"Chao Tan, Huan Zhao, H. Ding\",\"doi\":\"10.1108/ir-12-2021-0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nBranched articulated robots (BARs) are highly non-linear systems; accurate dynamic identification is critical for model-based control in high-speed and heavy-load applications. However, due to some dynamic parameters being redundant, dynamic models are singular, which increases the calculation amount and reduces the robustness of identification. This paper aims to propose a novel methodology for the dynamic analysis and redundant parameters elimination of BARs.\\n\\n\\nDesign/methodology/approach\\nAt first, the motion of a rigid body is divided into constraint-dependent and constraint-independent. The redundancy of inertial parameters is analyzed from physical constraints. Then, the redundant parameters are eliminated by mapping posterior links to their antecedents, which can be applied for re-deriving the Newton–Euler formulas. Finally, through parameter transformation, the presented dynamic model is non-singular and available for identification directly.\\n\\n\\nFindings\\nNew formulas for redundant parameters elimination are explicit and computationally efficient. This unifies the redundant parameters elimination of prismatic and revolute joints for BARs, and it is also applicable to other types of joints containing constraints. The proposed approach is conducive to facilitating the modelling phase during the robot identification. Simulation studies are conducted to illustrate the effectiveness of the proposed redundant parameters elimination and non-singular dynamic model determination. Experimental studies are carried out to verify the result of the identification algorithm.\\n\\n\\nOriginality/value\\nThis work proposes to determine and directly identify the non-redundant dynamic model of robots, which can help to reduce the procedure of obtaining the reversible regression matrix for identification.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-12-2021-0296\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-12-2021-0296","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Non-redundant inertial parameters determination for dynamic identification of branched articulated robots
Purpose
Branched articulated robots (BARs) are highly non-linear systems; accurate dynamic identification is critical for model-based control in high-speed and heavy-load applications. However, due to some dynamic parameters being redundant, dynamic models are singular, which increases the calculation amount and reduces the robustness of identification. This paper aims to propose a novel methodology for the dynamic analysis and redundant parameters elimination of BARs.
Design/methodology/approach
At first, the motion of a rigid body is divided into constraint-dependent and constraint-independent. The redundancy of inertial parameters is analyzed from physical constraints. Then, the redundant parameters are eliminated by mapping posterior links to their antecedents, which can be applied for re-deriving the Newton–Euler formulas. Finally, through parameter transformation, the presented dynamic model is non-singular and available for identification directly.
Findings
New formulas for redundant parameters elimination are explicit and computationally efficient. This unifies the redundant parameters elimination of prismatic and revolute joints for BARs, and it is also applicable to other types of joints containing constraints. The proposed approach is conducive to facilitating the modelling phase during the robot identification. Simulation studies are conducted to illustrate the effectiveness of the proposed redundant parameters elimination and non-singular dynamic model determination. Experimental studies are carried out to verify the result of the identification algorithm.
Originality/value
This work proposes to determine and directly identify the non-redundant dynamic model of robots, which can help to reduce the procedure of obtaining the reversible regression matrix for identification.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.