{"title":"基于局部敏感哈希的高效交互神经排序","authors":"Shiyu Ji, Jinjin Shao, Tao Yang","doi":"10.1145/3308558.3313576","DOIUrl":null,"url":null,"abstract":"Interaction-based neural ranking has been shown to be effective for document search using distributed word representations. However the time or space required is very expensive for online query processing with neural ranking. This paper investigates fast approximation of three interaction-based neural ranking algorithms using Locality Sensitive Hashing (LSH). It accelerates query-document interaction computation by using a runtime cache with precomputed term vectors, and speeds up kernel calculation by taking advantages of limited integer similarity values. This paper presents the design choices with cost analysis, and an evaluation that assesses efficiency benefits and relevance tradeoffs for the tested datasets.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Efficient Interaction-based Neural Ranking with Locality Sensitive Hashing\",\"authors\":\"Shiyu Ji, Jinjin Shao, Tao Yang\",\"doi\":\"10.1145/3308558.3313576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interaction-based neural ranking has been shown to be effective for document search using distributed word representations. However the time or space required is very expensive for online query processing with neural ranking. This paper investigates fast approximation of three interaction-based neural ranking algorithms using Locality Sensitive Hashing (LSH). It accelerates query-document interaction computation by using a runtime cache with precomputed term vectors, and speeds up kernel calculation by taking advantages of limited integer similarity values. This paper presents the design choices with cost analysis, and an evaluation that assesses efficiency benefits and relevance tradeoffs for the tested datasets.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Interaction-based Neural Ranking with Locality Sensitive Hashing
Interaction-based neural ranking has been shown to be effective for document search using distributed word representations. However the time or space required is very expensive for online query processing with neural ranking. This paper investigates fast approximation of three interaction-based neural ranking algorithms using Locality Sensitive Hashing (LSH). It accelerates query-document interaction computation by using a runtime cache with precomputed term vectors, and speeds up kernel calculation by taking advantages of limited integer similarity values. This paper presents the design choices with cost analysis, and an evaluation that assesses efficiency benefits and relevance tradeoffs for the tested datasets.