{"title":"分类和连续处理因果推理的协变量平衡","authors":"Seong-ho Lee , Yanyuan Ma , Xavier de Luna","doi":"10.1016/j.ecosta.2022.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>Novel estimators of causal effects for categorical and continuous treatments are proposed by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining the treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. A data analysis suggests a nonlinear effect of BMI on self-reported health decline among the elderly.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 304-329"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariate balancing for causal inference on categorical and continuous treatments\",\"authors\":\"Seong-ho Lee , Yanyuan Ma , Xavier de Luna\",\"doi\":\"10.1016/j.ecosta.2022.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel estimators of causal effects for categorical and continuous treatments are proposed by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining the treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. A data analysis suggests a nonlinear effect of BMI on self-reported health decline among the elderly.</div></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"33 \",\"pages\":\"Pages 304-329\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452306222000077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Covariate balancing for causal inference on categorical and continuous treatments
Novel estimators of causal effects for categorical and continuous treatments are proposed by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining the treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. A data analysis suggests a nonlinear effect of BMI on self-reported health decline among the elderly.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.