{"title":"废聚烯烃馏份催化质量的改进","authors":"O. Tóth, A. Holló, J. Hancsók","doi":"10.1515/cse-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract The demand for alternative fuels having low greenhouse gases emission is continuously growing worldwide. Therefore it is preferred to produce new, waste originated components. One option is the recycling of plastic waste with cracking. The produced hydrocarbon fraction is not suitable for fuels thus it is important to improve its quality. The aim of our experimental work was to study the quality improvement of this cracked fraction (PPCGO) and crude oil based middle distillates (different composition) with co-processing. Our goal was to produce high quality diesel fuel blending components. We studied the effect of process parameters on the quality of products. Ni (2.3%) Mo (11.0%) P (2.3%)/Al2O3 catalyst was used. During the experiments we studied the hydrogenation of olefins, saturation of aromatics and desulphurization. The hydrogenation of olefins was practically complete at 300°C. It took place at significantly higher speed than the desulphurization reactions. In case of light gas oil feedstock the products had significantly lower sulphur contents; below 10 mg/kg already at 340°C. We determined that the cracked fraction had beneficial effect on the performance properties of the products. In case of all feedstock combinations, we found process parameters which can be used to produce high-quality diesel fuel blending components on the tested catalyst.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"18 1","pages":"12 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Catalytic quality improvement of waste polyolefin originated fractions\",\"authors\":\"O. Tóth, A. Holló, J. Hancsók\",\"doi\":\"10.1515/cse-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The demand for alternative fuels having low greenhouse gases emission is continuously growing worldwide. Therefore it is preferred to produce new, waste originated components. One option is the recycling of plastic waste with cracking. The produced hydrocarbon fraction is not suitable for fuels thus it is important to improve its quality. The aim of our experimental work was to study the quality improvement of this cracked fraction (PPCGO) and crude oil based middle distillates (different composition) with co-processing. Our goal was to produce high quality diesel fuel blending components. We studied the effect of process parameters on the quality of products. Ni (2.3%) Mo (11.0%) P (2.3%)/Al2O3 catalyst was used. During the experiments we studied the hydrogenation of olefins, saturation of aromatics and desulphurization. The hydrogenation of olefins was practically complete at 300°C. It took place at significantly higher speed than the desulphurization reactions. In case of light gas oil feedstock the products had significantly lower sulphur contents; below 10 mg/kg already at 340°C. We determined that the cracked fraction had beneficial effect on the performance properties of the products. In case of all feedstock combinations, we found process parameters which can be used to produce high-quality diesel fuel blending components on the tested catalyst.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"18 1\",\"pages\":\"12 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cse-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
全球对低温室气体排放替代燃料的需求不断增长。因此,最好是生产新的、源自废物的部件。一种选择是回收有裂缝的塑料垃圾。所产生的烃类馏分不适合用作燃料,因此提高其质量具有重要意义。本实验的目的是研究通过协同处理提高该裂化馏分(PPCGO)和不同组成的原油基中间馏分的质量。我们的目标是生产高质量的柴油混合部件。研究了工艺参数对产品质量的影响。采用Ni (2.3%) Mo (11.0%) P (2.3%)/Al2O3催化剂。实验研究了烯烃的加氢反应、芳烃的饱和反应和脱硫反应。烯烃的氢化反应在300℃时基本完成。它的发生速度明显快于脱硫反应。以轻质油为原料,产品含硫量显著降低;在340°C时已低于10mg /kg。结果表明,裂化部分对产品的性能有良好的影响。在所有原料组合的情况下,我们找到了可用于在测试催化剂上生产高质量柴油混合组分的工艺参数。
Catalytic quality improvement of waste polyolefin originated fractions
Abstract The demand for alternative fuels having low greenhouse gases emission is continuously growing worldwide. Therefore it is preferred to produce new, waste originated components. One option is the recycling of plastic waste with cracking. The produced hydrocarbon fraction is not suitable for fuels thus it is important to improve its quality. The aim of our experimental work was to study the quality improvement of this cracked fraction (PPCGO) and crude oil based middle distillates (different composition) with co-processing. Our goal was to produce high quality diesel fuel blending components. We studied the effect of process parameters on the quality of products. Ni (2.3%) Mo (11.0%) P (2.3%)/Al2O3 catalyst was used. During the experiments we studied the hydrogenation of olefins, saturation of aromatics and desulphurization. The hydrogenation of olefins was practically complete at 300°C. It took place at significantly higher speed than the desulphurization reactions. In case of light gas oil feedstock the products had significantly lower sulphur contents; below 10 mg/kg already at 340°C. We determined that the cracked fraction had beneficial effect on the performance properties of the products. In case of all feedstock combinations, we found process parameters which can be used to produce high-quality diesel fuel blending components on the tested catalyst.