电磁和剪切条件下混合纳米Fe3O4在废水处理中的应用

C. Liosis, E. Karvelas, T. Karakasidis, I. Sarris
{"title":"电磁和剪切条件下混合纳米Fe3O4在废水处理中的应用","authors":"C. Liosis, E. Karvelas, T. Karakasidis, I. Sarris","doi":"10.2166/aqua.2022.080","DOIUrl":null,"url":null,"abstract":"\n The ability of heavy metals to accumulate in living organisms, combined with the fact that they are not biodegradable, necessitates an expansion and improvement of the existing water purification methods. An effective mixing of contaminated water with heavy metals and magnetic nanoparticles is crucial for water treatment applications. In the present work, electromagnetic and shear mixing are combined to explore optimization mixing strategies. Mixing is studied through simulations under various initial conditions for two streams that are loaded with nanoparticles and one contaminated water stream that lies between the nanoparticle streams. In the present work, magnetic mixing is superimposed with a time-modulated gradient external magnetic field. The results show that as the radius ratio between the nanoparticles and the heavy metals increases, the external magnetic field is more effective insofar as the mixing of the nanoparticles is concerned. Moreover, for simulations where the radius ratio is higher or equal to 10, an effective mixing is achieved. By comparing the velocity ratios, a better mixing is achieved in the case of higher velocity ratios. Also, minor effects on mixing are observed by comparing the ratios Vp/Vc = 10 and Vp/Vc = 20.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mixing of Fe3O4 nanoparticles under electromagnetic and shear conditions for wastewater treatment applications\",\"authors\":\"C. Liosis, E. Karvelas, T. Karakasidis, I. Sarris\",\"doi\":\"10.2166/aqua.2022.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The ability of heavy metals to accumulate in living organisms, combined with the fact that they are not biodegradable, necessitates an expansion and improvement of the existing water purification methods. An effective mixing of contaminated water with heavy metals and magnetic nanoparticles is crucial for water treatment applications. In the present work, electromagnetic and shear mixing are combined to explore optimization mixing strategies. Mixing is studied through simulations under various initial conditions for two streams that are loaded with nanoparticles and one contaminated water stream that lies between the nanoparticle streams. In the present work, magnetic mixing is superimposed with a time-modulated gradient external magnetic field. The results show that as the radius ratio between the nanoparticles and the heavy metals increases, the external magnetic field is more effective insofar as the mixing of the nanoparticles is concerned. Moreover, for simulations where the radius ratio is higher or equal to 10, an effective mixing is achieved. By comparing the velocity ratios, a better mixing is achieved in the case of higher velocity ratios. Also, minor effects on mixing are observed by comparing the ratios Vp/Vc = 10 and Vp/Vc = 20.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

重金属在生物体中积累的能力,加上它们不可生物降解的事实,需要扩大和改进现有的水净化方法。重金属和磁性纳米颗粒的有效混合是水处理应用的关键。本文将电磁搅拌与剪切搅拌相结合,探索优化搅拌策略。在不同初始条件下,模拟了两种载有纳米颗粒的水流和一种载有纳米颗粒的水流之间的混合情况。在本工作中,磁混合与时调制梯度外磁场叠加。结果表明:随着纳米粒子与重金属的半径比的增大,外加磁场对纳米粒子的混合效果越好;此外,对于半径比大于或等于10的模拟,可以实现有效的混合。通过比较速度比,速度比越高,混合效果越好。此外,通过比较Vp/Vc = 10和Vp/Vc = 20的比例,可以观察到对混合的轻微影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixing of Fe3O4 nanoparticles under electromagnetic and shear conditions for wastewater treatment applications
The ability of heavy metals to accumulate in living organisms, combined with the fact that they are not biodegradable, necessitates an expansion and improvement of the existing water purification methods. An effective mixing of contaminated water with heavy metals and magnetic nanoparticles is crucial for water treatment applications. In the present work, electromagnetic and shear mixing are combined to explore optimization mixing strategies. Mixing is studied through simulations under various initial conditions for two streams that are loaded with nanoparticles and one contaminated water stream that lies between the nanoparticle streams. In the present work, magnetic mixing is superimposed with a time-modulated gradient external magnetic field. The results show that as the radius ratio between the nanoparticles and the heavy metals increases, the external magnetic field is more effective insofar as the mixing of the nanoparticles is concerned. Moreover, for simulations where the radius ratio is higher or equal to 10, an effective mixing is achieved. By comparing the velocity ratios, a better mixing is achieved in the case of higher velocity ratios. Also, minor effects on mixing are observed by comparing the ratios Vp/Vc = 10 and Vp/Vc = 20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1