使用机器学习算法和深度学习的恒星-星系分类

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal on Information Technologies and Security Pub Date : 2023-06-01 DOI:10.59035/vvlr5284
A. Savyanavar, Nikhil C. Mhala, Shiv H. Sutar
{"title":"使用机器学习算法和深度学习的恒星-星系分类","authors":"A. Savyanavar, Nikhil C. Mhala, Shiv H. Sutar","doi":"10.59035/vvlr5284","DOIUrl":null,"url":null,"abstract":"Cosmology is the study of the universe comprising stars and galaxies. Advancement in the telescope has made it possible to capture high-resolution images, which can be analyzed using machine learning (ML) algorithms. This paper classifies the star galaxy dataset into two classes: star and galaxy using ML algorithms and compares their classification performance. It is observed that random forest provides better accuracy of 78% as compared to other ML classifiers. Further to improve the classification accuracy, we proposed a CNN (Convolution Neural Network) model and achieved an accuracy of 92.44%. Since the CNN model itself extracts the characteristics, it exhibits superior classification accuracy.","PeriodicalId":42317,"journal":{"name":"International Journal on Information Technologies and Security","volume":"96 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Star-Galaxy classification using machine learning algorithms and deep learning\",\"authors\":\"A. Savyanavar, Nikhil C. Mhala, Shiv H. Sutar\",\"doi\":\"10.59035/vvlr5284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cosmology is the study of the universe comprising stars and galaxies. Advancement in the telescope has made it possible to capture high-resolution images, which can be analyzed using machine learning (ML) algorithms. This paper classifies the star galaxy dataset into two classes: star and galaxy using ML algorithms and compares their classification performance. It is observed that random forest provides better accuracy of 78% as compared to other ML classifiers. Further to improve the classification accuracy, we proposed a CNN (Convolution Neural Network) model and achieved an accuracy of 92.44%. Since the CNN model itself extracts the characteristics, it exhibits superior classification accuracy.\",\"PeriodicalId\":42317,\"journal\":{\"name\":\"International Journal on Information Technologies and Security\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information Technologies and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59035/vvlr5284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Technologies and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59035/vvlr5284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

宇宙学是研究由恒星和星系组成的宇宙的学科。望远镜的进步使得捕捉高分辨率图像成为可能,这些图像可以使用机器学习(ML)算法进行分析。本文利用ML算法将恒星星系数据集分为恒星和星系两类,并比较了它们的分类性能。观察到,与其他ML分类器相比,随机森林提供了78%的更好准确率。为了进一步提高分类精度,我们提出了CNN(卷积神经网络)模型,准确率达到92.44%。由于CNN模型本身提取了特征,因此具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Star-Galaxy classification using machine learning algorithms and deep learning
Cosmology is the study of the universe comprising stars and galaxies. Advancement in the telescope has made it possible to capture high-resolution images, which can be analyzed using machine learning (ML) algorithms. This paper classifies the star galaxy dataset into two classes: star and galaxy using ML algorithms and compares their classification performance. It is observed that random forest provides better accuracy of 78% as compared to other ML classifiers. Further to improve the classification accuracy, we proposed a CNN (Convolution Neural Network) model and achieved an accuracy of 92.44%. Since the CNN model itself extracts the characteristics, it exhibits superior classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
66.70%
发文量
0
期刊最新文献
System for automated design of resonant inverters Hybrid algorithms with alternative embedded local search schemes for the p-median problem Ethno-demographic dimensions of national power GIS-based model for the assessment of the smart sustainable development of municipalities of Northeast Bulgaria A new light ensemble deep-learning framework to detect fire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1