{"title":"自供电减振系统中的调节电子元件:实验测试","authors":"Ł. Jastrzębski","doi":"10.7494/MECH.2014.33.2.43","DOIUrl":null,"url":null,"abstract":"The paper summarises the results of laboratory testing of a vibration reduction system with energy harvesting capability, implemented in an 2 DOF mechanical application. The vibration reduction system comprises a commercially available RD-1005-3 type magnetorheological (MR) damper and an electromagnetic energy transducer (EPE) executing the reciprocating motion. The aim of the experiment was to compare the performance of the vibration reduction with two types of power conditioning systems and that in which the MR damper coil is fed directly with energy generated by EPE. Frequency characteristics are provided showing the plots of transmissibility coefficients, MR damper force, voltage generated by EPE, current intensity in the MR damper control coil, supplied electric power and mechanical power dissipated by the damper.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"26 1","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONDITIONING ELECTRONICS IN A SELF-POWERED VIBRATION REDUCTION SYSTEM: EXPERIMENTAL TESTING\",\"authors\":\"Ł. Jastrzębski\",\"doi\":\"10.7494/MECH.2014.33.2.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper summarises the results of laboratory testing of a vibration reduction system with energy harvesting capability, implemented in an 2 DOF mechanical application. The vibration reduction system comprises a commercially available RD-1005-3 type magnetorheological (MR) damper and an electromagnetic energy transducer (EPE) executing the reciprocating motion. The aim of the experiment was to compare the performance of the vibration reduction with two types of power conditioning systems and that in which the MR damper coil is fed directly with energy generated by EPE. Frequency characteristics are provided showing the plots of transmissibility coefficients, MR damper force, voltage generated by EPE, current intensity in the MR damper control coil, supplied electric power and mechanical power dissipated by the damper.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"26 1\",\"pages\":\"43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2014.33.2.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2014.33.2.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
CONDITIONING ELECTRONICS IN A SELF-POWERED VIBRATION REDUCTION SYSTEM: EXPERIMENTAL TESTING
The paper summarises the results of laboratory testing of a vibration reduction system with energy harvesting capability, implemented in an 2 DOF mechanical application. The vibration reduction system comprises a commercially available RD-1005-3 type magnetorheological (MR) damper and an electromagnetic energy transducer (EPE) executing the reciprocating motion. The aim of the experiment was to compare the performance of the vibration reduction with two types of power conditioning systems and that in which the MR damper coil is fed directly with energy generated by EPE. Frequency characteristics are provided showing the plots of transmissibility coefficients, MR damper force, voltage generated by EPE, current intensity in the MR damper control coil, supplied electric power and mechanical power dissipated by the damper.