面向智能制造环境中采用系统范式的信息物理系统

Borja Ramis, Wael M. Mohammed, J. Lastra, Alberto Villalonga, Gerardo Beruvides, F. Castaño, R. Haber
{"title":"面向智能制造环境中采用系统范式的信息物理系统","authors":"Borja Ramis, Wael M. Mohammed, J. Lastra, Alberto Villalonga, Gerardo Beruvides, F. Castaño, R. Haber","doi":"10.1109/INDIN.2018.8472061","DOIUrl":null,"url":null,"abstract":"Cyber-physical Systems (CPS) in industrial manufacturing facilities demand a continuous interaction with different and a large amount of distributed and networked computing nodes, devices and human operators. These systems are critical to ensure the quality of production and the safety of persons working at the shop floor level. Furthermore, this situation is similar in other domains, such as logistics that, in turn, are connected and affect the overall production efficiency. In this context, this article presents some key steps for integrating three pillars of CPS (production line, logistics and facilities) into the current smart manufacturing environments in order to adopt an industrial Cyber-Physical Systems of Systems (CPSoS) paradigm. The approach is focused on the integration in several digital functionalities in a cloud-based platform to allow a real time multiple devices interaction, data analytics/sharing and machine learning-based global reconfiguration to increase the management and optimization capabilities for increasing the quality of facility services, safety and energy efficiency and industrial productivity. Conceptually, isolated systems may enhance their capabilities by accessing to information of other systems. The approach introduces particular vision, main components, potential and challenges of the envisioned CPSoS. In addition, the description of one scenario for realizing the CPSoS vision is presented. The results herein presented will pave the way for the adoption of CPSoS that can be used as a pilot for further research on this emerging topic.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"24 1","pages":"792-799"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Towards the Adoption of Cyber-Physical Systems of Systems Paradigm in Smart Manufacturing Environments\",\"authors\":\"Borja Ramis, Wael M. Mohammed, J. Lastra, Alberto Villalonga, Gerardo Beruvides, F. Castaño, R. Haber\",\"doi\":\"10.1109/INDIN.2018.8472061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical Systems (CPS) in industrial manufacturing facilities demand a continuous interaction with different and a large amount of distributed and networked computing nodes, devices and human operators. These systems are critical to ensure the quality of production and the safety of persons working at the shop floor level. Furthermore, this situation is similar in other domains, such as logistics that, in turn, are connected and affect the overall production efficiency. In this context, this article presents some key steps for integrating three pillars of CPS (production line, logistics and facilities) into the current smart manufacturing environments in order to adopt an industrial Cyber-Physical Systems of Systems (CPSoS) paradigm. The approach is focused on the integration in several digital functionalities in a cloud-based platform to allow a real time multiple devices interaction, data analytics/sharing and machine learning-based global reconfiguration to increase the management and optimization capabilities for increasing the quality of facility services, safety and energy efficiency and industrial productivity. Conceptually, isolated systems may enhance their capabilities by accessing to information of other systems. The approach introduces particular vision, main components, potential and challenges of the envisioned CPSoS. In addition, the description of one scenario for realizing the CPSoS vision is presented. The results herein presented will pave the way for the adoption of CPSoS that can be used as a pilot for further research on this emerging topic.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"24 1\",\"pages\":\"792-799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8472061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8472061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

工业制造设施中的信息物理系统(CPS)需要与不同的和大量的分布式和网络化计算节点、设备和人工操作员进行持续交互。这些系统对于确保生产质量和车间工作人员的安全至关重要。此外,这种情况在其他领域也是类似的,例如物流,它们反过来相互关联并影响整体生产效率。在此背景下,本文提出了将CPS的三大支柱(生产线、物流和设施)集成到当前智能制造环境中的一些关键步骤,以便采用工业网络物理系统(CPSoS)范式。该方法的重点是在基于云的平台中集成多个数字功能,以实现实时多设备交互、数据分析/共享和基于机器学习的全局重新配置,从而提高管理和优化能力,从而提高设施服务质量、安全性、能源效率和工业生产力。从概念上讲,孤立的系统可以通过访问其他系统的信息来增强其能力。该方法介绍了所设想的CPSoS的特定愿景、主要组成部分、潜力和挑战。此外,还描述了实现CPSoS愿景的一个场景。本文提出的结果将为采用CPSoS铺平道路,CPSoS可以作为进一步研究这一新兴主题的试点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards the Adoption of Cyber-Physical Systems of Systems Paradigm in Smart Manufacturing Environments
Cyber-physical Systems (CPS) in industrial manufacturing facilities demand a continuous interaction with different and a large amount of distributed and networked computing nodes, devices and human operators. These systems are critical to ensure the quality of production and the safety of persons working at the shop floor level. Furthermore, this situation is similar in other domains, such as logistics that, in turn, are connected and affect the overall production efficiency. In this context, this article presents some key steps for integrating three pillars of CPS (production line, logistics and facilities) into the current smart manufacturing environments in order to adopt an industrial Cyber-Physical Systems of Systems (CPSoS) paradigm. The approach is focused on the integration in several digital functionalities in a cloud-based platform to allow a real time multiple devices interaction, data analytics/sharing and machine learning-based global reconfiguration to increase the management and optimization capabilities for increasing the quality of facility services, safety and energy efficiency and industrial productivity. Conceptually, isolated systems may enhance their capabilities by accessing to information of other systems. The approach introduces particular vision, main components, potential and challenges of the envisioned CPSoS. In addition, the description of one scenario for realizing the CPSoS vision is presented. The results herein presented will pave the way for the adoption of CPSoS that can be used as a pilot for further research on this emerging topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1