G. Kalogerakis, T. Moran, Thelinh Nguyen, Gilles Denoyer
{"title":"在0.13µm BiCMOS中实现四路25Gb/s 270mW TIA,串扰损耗<0.15dB","authors":"G. Kalogerakis, T. Moran, Thelinh Nguyen, Gilles Denoyer","doi":"10.1109/ISSCC.2013.6487661","DOIUrl":null,"url":null,"abstract":"The push for 100Gb/s optical transport and beyond necessitates electronic components at higher speed and integration level in order to drive down cost, complexity and size of transceivers [1-2]. This requires parallel multi-channel optical transceivers each operating at 25Gb/s and beyond. Due to variations in the output power of transmitters and in some cases different optical paths the parallel receivers have to operate at different input optical power levels. This trend places increasing strain to the acceptable inter-channel crosstalk in integrated multi-channel receivers [3]. Minimizing this cross-talk penalty when all channels are operational is becoming increasingly important in ultra-high throughput optical links.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"8 1","pages":"116-117"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A quad 25Gb/s 270mW TIA in 0.13µm BiCMOS with <0.15dB crosstalk penalty\",\"authors\":\"G. Kalogerakis, T. Moran, Thelinh Nguyen, Gilles Denoyer\",\"doi\":\"10.1109/ISSCC.2013.6487661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The push for 100Gb/s optical transport and beyond necessitates electronic components at higher speed and integration level in order to drive down cost, complexity and size of transceivers [1-2]. This requires parallel multi-channel optical transceivers each operating at 25Gb/s and beyond. Due to variations in the output power of transmitters and in some cases different optical paths the parallel receivers have to operate at different input optical power levels. This trend places increasing strain to the acceptable inter-channel crosstalk in integrated multi-channel receivers [3]. Minimizing this cross-talk penalty when all channels are operational is becoming increasingly important in ultra-high throughput optical links.\",\"PeriodicalId\":6378,\"journal\":{\"name\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"volume\":\"8 1\",\"pages\":\"116-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2013.6487661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quad 25Gb/s 270mW TIA in 0.13µm BiCMOS with <0.15dB crosstalk penalty
The push for 100Gb/s optical transport and beyond necessitates electronic components at higher speed and integration level in order to drive down cost, complexity and size of transceivers [1-2]. This requires parallel multi-channel optical transceivers each operating at 25Gb/s and beyond. Due to variations in the output power of transmitters and in some cases different optical paths the parallel receivers have to operate at different input optical power levels. This trend places increasing strain to the acceptable inter-channel crosstalk in integrated multi-channel receivers [3]. Minimizing this cross-talk penalty when all channels are operational is becoming increasingly important in ultra-high throughput optical links.