重整装置软传感器的深层结构

S. Graziani, M. Xibilia
{"title":"重整装置软传感器的深层结构","authors":"S. Graziani, M. Xibilia","doi":"10.1109/INDIN.2018.8471942","DOIUrl":null,"url":null,"abstract":"Deep Neural Network (DNN) based Soft Sensors (SSs) have been demonstrated as successful alternatives to other data-driven structures. Here, a dynamic DNN based SS is proposed for the estimation of the Research Octane Number (RON) for a Reformer Unit in a refinery. The SS is required to estimate the RON when the plant operates in two different working conditions. Nonlinear Finite Inputs Response (NFIR) models have been investigated. The regressors in the models have been selected according to a cross-correlation analysis between candidate inputs and the RON value. The performance of the proposed SSs has been compared with previously designed deep structures, based on different dynamic first level models, coupled with a fuzzy algorithm.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"7 1","pages":"927-932"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep Structures for a Reformer Unit Soft Sensor\",\"authors\":\"S. Graziani, M. Xibilia\",\"doi\":\"10.1109/INDIN.2018.8471942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Network (DNN) based Soft Sensors (SSs) have been demonstrated as successful alternatives to other data-driven structures. Here, a dynamic DNN based SS is proposed for the estimation of the Research Octane Number (RON) for a Reformer Unit in a refinery. The SS is required to estimate the RON when the plant operates in two different working conditions. Nonlinear Finite Inputs Response (NFIR) models have been investigated. The regressors in the models have been selected according to a cross-correlation analysis between candidate inputs and the RON value. The performance of the proposed SSs has been compared with previously designed deep structures, based on different dynamic first level models, coupled with a fuzzy algorithm.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"7 1\",\"pages\":\"927-932\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8471942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8471942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于深度神经网络(DNN)的软传感器(ss)已被证明是其他数据驱动结构的成功替代品。本文提出了一种基于动态深度神经网络的分析方法,用于炼油厂重整装置研究辛烷值(RON)的估计。当工厂在两种不同的工作条件下运行时,SS需要估计RON。研究了非线性有限输入响应(NFIR)模型。模型中的回归量是根据候选输入与RON值之间的相互关联分析来选择的。基于不同的动态一级模型,结合模糊算法,将所提出的SSs的性能与先前设计的深层结构进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Structures for a Reformer Unit Soft Sensor
Deep Neural Network (DNN) based Soft Sensors (SSs) have been demonstrated as successful alternatives to other data-driven structures. Here, a dynamic DNN based SS is proposed for the estimation of the Research Octane Number (RON) for a Reformer Unit in a refinery. The SS is required to estimate the RON when the plant operates in two different working conditions. Nonlinear Finite Inputs Response (NFIR) models have been investigated. The regressors in the models have been selected according to a cross-correlation analysis between candidate inputs and the RON value. The performance of the proposed SSs has been compared with previously designed deep structures, based on different dynamic first level models, coupled with a fuzzy algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1